

Bansilal Ramnath Agarwal Charitable Trust's Vishwakarma Institute of Information Technology, Pune-48 (An Autonomous Institute affiliated to Savitribai Phule Pune University)

Department of Engineering & Applied Sciences

ACADEMIC STRUCTURE AND SYLLABUS AY 2022-23 FIRST YEAR BACHELOR OF TECHNOLOGY

BRACT'S VISHWAKARMA INSTITUTE OF INFORMATION TECHNOLOGY PUNE-48 (AN AUTONOMOUS INSTITUTE AFFILIATED TO SAVITRIBAI PHULE PUNE UNIVERSITY)

DEPARTMENT OF ENGINEERING & APPLIED SCIENCES

Bansilal Ramnath Agarwal Charitable Trust's Vishwakarma Institute of Information Technology, Pune-48

(An Autonomous Institute affiliated to Savitribai Phule Pune University)

Department of Engineering & Applied Sciences

F. Y. B. TECH. (COMMON TO ALL PROGRAMS) SEMESTER I/II (Pattern 2020)

MODULE I

Course Code	Course Title	Course Type		Feachii Schem			Exam	ination	Scheme		Total	Credits
			L	Т	Р	CE	ISE	SCE	ESE	PR/ OR/ TW		
ES10201A	Linear Algebra	TH	3	1	-	20	30	20	30	25	125	4
CS10202A	Fundamentals of Programming	TH	2	-	2	20	30	20	30	25	125	3
ET10203A	Basic Electrical Engineering	TH	2	-	2	20	30	20	30	25	125	3
ES10204A	Engineering Physics	TH	2	-	2	20	30	20	30	25	125	3
ES10205A	Computational Science	CE	I	I	-	-	-	-	-	25	25	2
ME10206A	Engineering Graphics and Mechanical Workshop	CE	1	-	4	-	-	-	-	50	50	3
ES10207A	Energy, Water, Environment Sustainability	CE	1	I	-	-	-	-	-	25	25	2
ES10208A	Logical Reasoning	CE	l	I	-	-	-	-	-	25	25	2
MI	Induction Program	AU	-	-	-	-	-	-	-	-	-	-
M2	Foreign Language	AU	-	-		-	-	-	-	-	-	
	Total		13	4	10	80	120	80	120	225	625	22

BOS Chairman

Dean Academics

Biregtor

Bansilal Ramnath Agarwal Charitable Trust's Vishwakarma Institute of Information Technology, Pune-48 (An Autonomous Institute affiliated to Savitribai Phule Pune University)

Department of Engineering & Applied Sciences

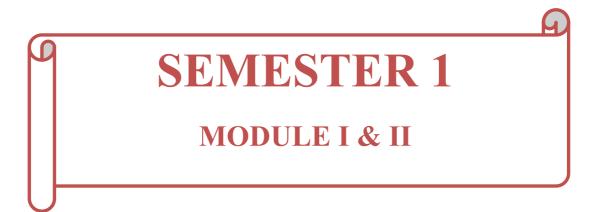
F.Y. B. TECH. (COMMON TO ALL PROGRAMS) SEMESTER I/II (Pattern 2020)

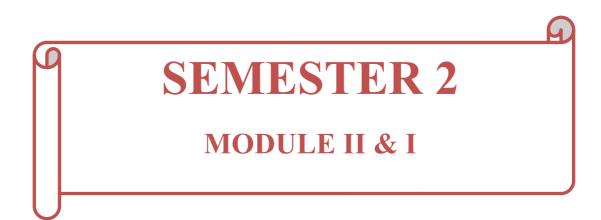
MODULE II

Course Code	Course Title	Course Type		Teachir Schem	-		Exam	ination	Scheme		Total	Credits
			L	Т	Р	CE	ISE	SCE	ESE	PR/ OR/ TW		
ES10201B	Calculus	TH	3	1	-	20	30	20	30	25	125	4
CS10202B	Python for Engineers	TH	2	-	2	20	30	20	30	25	125	3
ET10203B	Basic Electronics Engineering	ТН	2	-	2	20	30	20	30	25	125	3
ES10209B	Material Science	ТH	2	-	2	20	30	20	30	25	125	3
ES10205B	Smart Sensors	CE	1	1	- \		-	-	-	25	25	2
CV10206B	Éngineering Mechanics	CE	2	I	-	-	-	-	-	50	50	3
ES10207B	Personality Development and Professional Ethics	CE	1	1	-	-	-	-	-	25	25	2
ES10208B	Quantitative Aptitude	CE	1	1	-	-	-	-	-	25	25	2
M1	Induction Program	AU	-	-		-	-	-	-	-	-	-
M2	Foreign Language	AU	-	-	-	-	-	-	-	-	-	-
	Total		14	5	6	80	120	80	120	225	625	22

BOS Chairman

Dean Academics


Director



Bansilal Ramnath Agarwal Charitable Trust's Vishwakarma Institute of Information Technology, Pune-48 (An Autonomous Institute affiliated to Savitribai Phule Pune University)

Department of Engineering & Applied Sciences

Linear Algebra (ES10201A)

Teaching Scheme]	Examina	tion Sch	eme		
Credits: 4 Lecture (L): 3 hrs./week	CIE	ISE	SCE	ESE	PR/OR	TW	Total
Tutorial (T): 1 hr./week	20	30	20	30	-	25	125
Prerequisite course(s): Know	ledge of	matrices	and funct	ions.			
 Course objectives: It aims to teach mathematical and enhance thinking power of Course Outcomes: Upon completion of course, studies 1. Set up, solve and interprese 2. Acquire the knowledge of a complete the knowledge of a complete the knowledge of inner transmant. Apply knowledge of inner transmant is the set of th	methodol students lents will et linear s of vector s formation er produc compute of anowledge dratic for ations trices, Sys-	ogies and that wou be able t ystems. spaces. as geome t spaces t orthogona e of eige ms. stem of lins.	l models, ld be esse o trically. o comput al basis u nvalues a near equa	develop ential for te length sing Gran nd eigen	of a vecto n-Schmid vectors in	r, angle, t process various	distance s. fields of nation,
Vector space, subspace, Linear ovectors, Basis and dimension of matrix.		-	-		-		-
Unit III – Linear transformati	ons						
Introduction to linear transformations, Orthogotransformations. Unit IV – Inner product space	onal Tran				-		•
Inner product spaces, Orthogona	lity, Orth	logonal C	Compleme	ent, Gram	-Schmidt	process	of
orthogonalization, Applications	•	0		-			
Unit V – Eigen Values and Eig	en Vecto	ors					
Eigen Values and Eigen Vectors Hamilton Theorem, Diagonaliza		-		-	-	icity, Cay	yley-

Unit VI – Quadratic forms

Introduction to Quadratic forms, Diagonalization of quadratic form, Definiteness of quadratic form, Sylvester's Criterion, Applications of quadratic forms.

Text Books

- 1. Elementary Linear Algebra (10th edition) by Howard Anton & Chris Rorres, John Wiley & sons.
- 2. Linear Algebra: A Modern Introduction (4th Edition) by David Poole, Linear CengageLearning
- 3. Linear Algebra An Introduction by Ron Larson and David C. Falvo, Cengage Learning
- 4. Linear Algebra and its Applications by David C. Lay, Pearson.

Reference Books:

- Schaum's outlines of Linear Algebra (6th edition) by Seymour Lipschutz, Marc Lipson, McGraw-Hill Education (India) Private Limited, New Delhi.
- 2. Linear Algebra and its applications (4th edition) by Gilbert Strang, Cengage Learning (RS).
- 3. Advanced Engineering Mathematics, by Erwin Kreyszig, John Wiley & Sons.
- 4. Higher Engineering Mathematics.by B. V. Ramana., Tata McGraw Hill Publisher

List of Tutorials

- 1. Rank of matrix, Elementary Matrices
- 2. System of linear equations, Gauss-Jordan Elimination. Applications of System of Linear equations.
- 3. Vector Space, Subspace.
- 4. Linear Dependence, Independence, Basis and dimension of a vector space.
- 5. Linear transformations, kernel and range of a linear transformation, Matrices for Linear Transformation
- 6. Inner product Spaces, angle between two vectors & orthogonality, Gram Schmidt Process.
- 7. Orthogonal Transformation, Geometric properties of linear operators
- 8. Eigen Values and Eigen Vectors of a matrix
- 9. Diagonalization of a matrix, Orthogonal Diagonalization. Quadratic forms

Fundamentals of Programming (CS10202A)

Teaching Scheme		Examination Scheme										
Credits: 3 Lecture (L): 2 hrs./week	CIE	ISE	SCE	ESE	PR/OR	TW	Total					
Practical (P): 2 hrs./week	20	30	20	30	-	25	125					
Prerequisite course(s): Basi	c of Compu	iter Syste	em.	I	<u> </u>		•					
Course Objective(s): 1. Understand and develop 2. Develop the basis served			1 0	0	language.							

- 2. Develop the basic concepts of C++ programming language.
- 3. Build the concepts of object oriented programming.
- 4. Apply features of object oriented programming.

Course Outcomes:

Upon completion of the course, students will be able to

- 1. Acquire fundamental knowledge of C programming.
- 2. Compare between the top-down and bottom-up programming approach.
- 3. Apply the concepts of object-oriented programming.
- 4. Explore the features of object-oriented programming such as Inheritance and Polymorphism.

Unit I: Introduction to C Programming

Introduction to computer program. Types of Programming Languages: Machine-level, Assembly-level, High-level Language and Scripting Language. Features of C language, Character set, Constants, Operators, Variables, Static variable, Keywords and Comments, Data Types, Statements, I/O Operations, Preprocessor Directives. First C Program. Conditional Branching using if..else and switch..case. Iteration and Loops using for, while, and do..while, break and continue statements. Array.

Unit II: Introduction to C++ Programming

How C++ differs from C, C++ character set, C++ Tokens (Identifiers, Keywords, Constants, Operators), Structure of a C++ Program (include files, main function); Header files – iostream.h, namespace; Basics of Console Input and Output :cout, cin; Use of I/O operators (<< and >>), Use of endl, Variables Declaration, Conditional Branching using if..else and switch..case. Iteration and Loops using for, while, and do..while, break and continue statements. Array, function and pointer.

Unit III: Introduction to Object Oriented Programming

Concept of class and object, Procedure oriented programming Vs Object oriented programming, Examples of OOP languages, Features of OOP-Encapsulation, Inheritance, Polymorphism, Beginning OOP with C++- Defining class, member functions, member data ,access specifier, First C++ program with class, Creating object of class- memory allocation for object, array of object, access member functions and member data through object, Constructor and Destructor-Introduction, default constructor, parameterized constructor.

Unit IV: Inheritance and Polymorphism

Inheritance – Introduction, single inheritance, multiple inheritance, Static members in C++, Scope resolution operator, inline functions, Polymorphism – Introduction, function overloading, function overriding, virtual functions, Friend function.

Laboratory work

Practical Assignments List (Any 6 Lab assignments)

- 1. Study Assignment- Study of Linux Operating System and Basic Linux Commands.
- 2. Write c Program to accept 3 sides of triangle and print type of triangle (if....else)
- 3. Write a C program to print Fibonacci series up to n terms(for loop)
- 4. Write C program to compute factorial of given positive integer using recursive function
- 5. Write a C++ program to print Fibonacci series up to n terms.
- 6. Write a C++ Program to compute factorial of given positive integer using recursive function.
- 7. Write C++ program to create a class for student to get and print details of a student.
- 8. Write C++ program using Simple Parameterized Constructor for Find Prime Number.
- 9. Write C++ program to read and print student's information using two classes and simple inheritance.
- 10. Write C++ program to add two complex numbers using operator overloading.

Textbooks:

- 1. E. Balaguruswamy, Programming in ANSI C, Tata McGraw-Hill
- 2. Yashavant Kanetkar, "Let Us C", BPB Publications
- 3. E. Balaguruswami, "Object Oriented Programming with C++", Tata McGraw-Hill Publishing Company Limited
- 4. Byron Gottfried, Schaum's Outline of Programming with C, McGraw-Hill

Reference Books:

- 1. Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, Prentice Hall of India
- 2. Pradeep K. Sinha and Priti Sinha, "Computer Fundamentals", BPB Publications
- 3. Richard Petersen, "The Complete Reference Linux", McGraw-Hill Publications
- 4. Herbert Schildt, "C++: The Complete Reference", 4th Edition

Bansilal Ramnath Agarwal Charitable Trust's Vishwakarma Institute of Information Technology, Pune-48 (An Autonomous Institute affiliated to Savitribai Phule Pune University) Department of Engineering and Applied Sciences

Basic Electrical Engineering (ET10203A)

Teaching Scheme		Exa	aminatio	n Schem	e		
Credits: 3 Lecture (L): 2 hrs./week	CIE	ISE	SCE	ESE	PR/OR	TW	Total
Practical (P): 2 hrs./week	20	30	20	30		25	125
Prerequisite course(s):	·						
Course Objective(s): To ena	ble the lear	ner to unc	lerstand a	nd apply	basic con	cepts	
of electrical engineering.						-	
Course Outcomes:							
Upon completion of the course	e, students	will be at	ole to				
1. Calculate current, vol	tage and p	ower in	simple d	c circuit	s using K	Circhhoff	s laws,
Superposition theorem	Thevenin	's theorem	n and No	rton's the	eorem.		
2. Solve single phase ac						ance, ind	luctance
and capacitance along	with phaso	r diagram	IS.				
3. Compute efficiency, v	oltage reg	ulation, v	voltage a			n case o	of a two
winding single-phase t	ransformer	applying	fundame	ntal conc	epts.		
4. Calculate line and pha	se voltages	and cur	ents, acti	ve. react	ive and a	oparent r	ower in

- 4. Calculate line and phase voltages and currents, active, reactive and apparent power in case of balanced three phase star and delta connected circuits by applying fundamental concepts with relevant phasor diagrams; compute energy consumption in elementary physical systems; identify measures of energy conservation in residential sector.
- 5. Use wires, wiring components and measuring instruments; identify low voltage switchgear components and types of earthing along with its necessity.
- 6. Verify theoretical concepts experimentally using components and instruments for simple electrical circuits and single-phase transformer.
- 7. Demonstrate a sound technical knowledge of selected project topic.

Unit I: DC Circuits

Electrical circuit elements (R, L and C), voltage and current sources, Kirchhoff's current and voltage laws, Superposition, Thevenin and Norton Theorems applicable to DC circuits. Time-domain analysis of first-order RC series circuit.

Unit II: Single phase AC Circuits

Representation of sinusoidal waveforms, peak, rms and average values, form factor and peak factor, phasor representation and phasor algebra. Analysis of single-phase ac circuits consisting of R, L, C and their series combinations such as RL, RC, RLC with concept of real power, reactive power, apparent power. Series resonance, Concept of power factor and importance of power factor improvement.

Unit III: Transformers

Magnetic materials, B-H characteristics.

Single phase transformer: - Ideal and practical transformer, emf equation, exact equivalent circuit, losses in transformers, computation of regulation and efficiency.

Single winding transformer (Auto-transformer): - Concept, advantages, limitations and applications.

Unit IV: Three phase AC Circuits and energy computations

Basic concepts in three-phase balanced circuits, voltage and current relations in star and delta connections. Power calculations.

Basics of three-phase transformer connections.

Elementary calculations for energy consumption in physical systems such as electric pump, lift, locomotives, residential appliances and monthly electricity bill calculations based on energy consumption.

Introduction to energy conservation and conservation measures in the residential sector.

Textbooks:

- 1. A Textbook of Electrical Technology Volume- I and volume II –B. L. Theraja, S. Chand and Company Ltd., New Delhi.
- 2. Basic Electrical Engineering V. K. Mehta, S. Chand and Company Ltd., New Delhi.
- 3. Basic Electrical and Electronics Engineering S. K. Bhattacharya, Pearson Education.
- 4. Electrical Power S. L. Uppal, 13th Edition, Khanna Publisher, 1988.
- 5. Experiments in Basic Electrical Engineering, S.K.Bhattacharya, K.M.Rastogi, New age international pvt. Ltd. Publishers, Delhi, Reprint 2003.
- 6. A Textbook of Laboratory Course in Electrical Engineering, S.G.Tarnekar, S. Chand Publisher, 2006.

Reference Books:

- 1. Electrical and electronics Technology- Edward Hughes, Seventh Edition, Pearson Education.
- 2. Basic Electrical Engineering- I. J. Nagrath and Kothari, Tata McGraw Hill, 2010.
- 3. D. C. Kulshreshtha, "Basic Electrical Engineering", McGraw Hill, 2009.
- 4. H. Cotton, Electrical Technology in MKS Units, 7th Edition, CBS Publishers and Distributors, 2004.

Laboratory work

A) List of experiments (Any 6 out of the following experiments)

- 1. Basic safety precautions. Introduction and use of measuring instruments voltmeter, ammeter, multi-meter, oscilloscope. Real-life resistors, capacitors and inductors.
- 2. Study of components of LT Switchgear: Switch Fuse Unit (SFU), MCB, ELCB, MCCB, types
 - of wires and Cables, necessity and types of earthing.
- 3. Verification of Kirchhoff's laws and Superposition Theorem.
- A. Measuring the steady-state and transient time-response of series R-C circuits to a step change in voltage by using a circuit simulation package.
 - B. Sinusoidal steady state response and analysis of series R-C circuits.
- 5. Direct load test on single phase transformer for efficiency and regulation computations and computation of transformation ratio.
- 6. Three-phase circuits: Voltage and Current relationships (line-line voltage, phase-toneutral voltage, line and phase currents) in Star and Delta connected balanced loads. Energy conservation in the residential sector.

7. Verification of Thevenin's and/or Norton's Theorem.

B) PBL/Seminars
Students will select a relevant topic for seminar/project from electrical engineering and
will be evaluated based on presentation.

Engineering Physics (ES10204A)

Teaching Scheme		Exa	aminatio	n Schem	e		
Credits: 3 Lecture (L): 2 hrs./week	CIE	ISE	SCE	ESE	PR/OR	TW	Total
Practical (P): 2 hrs./week	20	30	20	30	-	25	125

Prerequisite course(s): Physics at the level of Standard XII

Course Objective(s):

- 1. To teach fundamental principles of Physics
- 2. Relate the fundamental principles of Physics to laboratory experiments
- 3. Relate the fundamental principles of Physics to applications

Course Outcomes:

Upon completion of the course, students will be able to

1. Determine displacement characteristics of free and forced oscillator with single degree of freedom

2. Determine electrical characteristics of intrinsic/ extrinsic semiconductor and a p-n junction diode on the basis of position of the Fermi level in their band structures

3. Determine Numerical Aperture (NA), Intermodal dispersion, Material dispersion and attenuation in an optical fibre for optical telecommunication

4. Correlate the characteristics like coherence, monochromaticity, directionality and intensity

of a laser in general and Single Heterojunction Laser (SHL) and Optical Fibre Laser in particular, to basic building blocks as well as applications of lasers.

5. Perform experiments and analyse the data to understand underlying Physics

6. Use Project Based Learning (PBL) as a tool to learn Applied Physics

Unit I: Vibrations

Free undamped oscillations, Free damped oscillations, forced damped oscillations, resonance

Unit II - Semiconductor Physics

Semiconductor Physics: Free electron theory, Fermi-Dirac distribution function, opening of band gap due to internal electron diffraction from lattice, band theory, Density of states, Carrier density in intrinsic semiconductors, position of Fermi energy in intrinsic semiconductor, Carrier density in extrinsic semiconductor, position of Fermi energy in extrinsic semiconductors, p-n junction diode. Charge density, potential and electric around the junction, and band structure of unbiased diode. Barrier potential, Working of p-n junction diode in the forward and reverse bias on the basis band structure. Ideal diode equation

Unit III – Optical Fibre

Propagation of light through an optical fibre, Numerical Aperture, Dispersion: Intermodal dispersion, concept of multi-mode step refractive index, multi-mode graded refractive index, single mode optical fibre, Group velocity and Material Dispersion, Attenuation and selection of wavelength for Optical fibre communication application

Unit IV – Lasers

Building blocks of laser: 1) Meta stable state 2) pumping 3) Population inversion 4) Spontaneous emission 5) Stimulated emission 6) Optical cavity – threshold gain, monochromaticity, coherence, directionality (diffraction limited divergence), Gaussian Optics to determine diameter of the beam at the focal plane of a lens for determining maximum possible intensity. Single Hetero-junction Laser: Construction, working, characteristics. Applications: Optical fibre communication, pumping for Optical Fibre Laser

Optical Fibre Laser: Construction, working, characteristics of fibre laser, Applications: Industrial laser cutting, drilling, welding of metals and non-metals. Advantage over other lasers like Nd:YAG, CO₂, etc.

Textbooks:

- 1. A text Book of Engineering Physics M. N. Avadhanulu and P. G. Kshirsagar, S. Chand & Co. Ltd.
- 2. Sears and Zemansky's University Physics Hugh D. Young and Roger A. Freedman, Pearson Education
- 3. A Textbook of Optics N. Subrahmanyam and Brij Lal, S. Chand Publications
- 4. A Text Book of Physics and Non-linear Optics by B. B. Laud

Reference Books:

- 1. Dynamics of Structures A. K. Chopra, Prentice Hall, New Jersey
- 2. Semiconductor Device Fundamentals R. F. Pierret, Pearson
- 3. Fundamentals of Optics Jenkins and White, Tata McGraw Hill
- 4. Fundamentals of Fiber Lasers and Fiber Amplifiers, Second Edition, Vartan V. Ter-Mikirtychev, Springer

Laboratory work

A) List of experiments (Any 6 out of the following experiments)

- 1. To determine the ultrasonic velocity in a liquid using Ultrasonic interferometer
- 2. To determine resonance frequency of Aluminium cantilever of different lengths
- 3. To determine band gap of a semiconductor from temperature dependence of its electrical resistance
- 4. To determine the Hall coefficient and number density of charge carriers of a semiconductor
- 5. To determine the beam profile and divergence of a laser beam
- 6. Damped oscillations Mechanical
- 7. Damped oscillations Electrical
- 8. NA of Optical fibre
- 9. Power attenuation in an optical fibre
- **B) PBL/Seminars**

PBL/ Seminar on topics from the syllabus for all students

Computational Science (ES10205A)

Teaching Scheme	Examination Scheme							
Credits: 2 Lecture (L): 1 hr./week	CIE	ISE	SCE	ESE	PR/OR	TW	Total	
Tutorial (T): 1 hr./week	-	-	-	-	-	25	25	

Prerequisite course(s): Higher Secondary Level Mathematics

Course Objective(s):

- 1. Apply knowledge of computing, mathematics, science, and/or engineering appropriate to the discipline
- 2. Solve computational problems using various problem-solving aspects.

Course Outcomes:

Upon completion of the course, students will be able to

- 1. Evaluate a computer-based system, process, or program to meet desired needs within realistic constraints
- 2. Apply mathematical foundations, algorithmic principles, and computer science theory in the modelling and design of computer-based systems.

Unit I - Fundamental Concept

Overview of Computational Science - A view of Science, Birth of hybrid model-Computational Science, models, skills and regimes of Computational Science

Computers and Computational Science – data error and computational error, forward and backward error, conditional numbers and sensitivity, stability and accuracy

Computational Science tools – input-algorithm-output, programming language attributes, interpreted scripting languages, compiled languages.

Algorithm and Flowcharting, Name binding, Selection, Repetition, input-algorithm-output.

Unit II - Overview of problem solving

Introduction to Problem Solving- General Concepts, problem solving in everyday life, types of problems, problems solving with computers, difficulties with problem solving. Problem solving Aspects. Top Down Design, Implementation of Algorithms, Program verification, The Efficiency of Algorithm, The Analysis of algorithms. Fundamental Algorithm

Problem Solving Concepts for the Computer- Constants and variables, data types, functions, operators, expressions and equations.

Planning your solution-Communicating with computer, organizing the solution, testing the solution, coding the solution, software development cycle.

Textbooks:

1. Angela B. Shiflet and George W. Shiflet "Introduction to Computational Science, Modeling And Simulation For The Sciences" Second Edition, Princet on And Oxford Press.

Reference Book:

- 1. Edwin D. Reilly, "Milestones in Computer Science and Information Technology", Greenwood Publishing Group, 2003.
- 2. Harry Henderson, "Encyclopedia of Computer Science and Technology" 4th Edition
- 3. Karl Beecher, "Computational Thinking: A beginner's guide to problem-solving and programming"

Bansilal Ramnath Agarwal Charitable Trust's Vishwakarma Institute of Information Technology, Pune-48 (An Autonomous Institute affiliated to Savitribai Phule Pune University) Department of Engineering & Applied Sciences

Engineering Graphics and Mechanical Workshop (ME 10206A)

Teaching Scheme	Examination Scheme						
Credits: 3 Lecture (L): 1 hr./week	CIE	ISE	SCE	ESE	PR/OR	TW	Total
Practical (P): 4 hrs./week	-	-	-	-	-	50	50

Prerequisite course(s): Basic Mathematics & Geometry

Course Objective(s): To understand, visualize & able to draw technical drawing with basic understanding of various mechanical manufacturing processes in terms of their characteristics.

Course Outcomes:

Upon completion of the course, students will be able to

- 1. Interpret 3D object & able to draw it's 2D views.
- 2. Visualise & Create 3D object from 2D drawing.
- 3. Understand the basic principle of various manufacturing processes.

Unit I: Orthographic Projections and Sectional Views

Basic of Projections of Line, Plane & Solid, Principal planes of Projection – Horizontal plane or horizontal reference plane, vertical plane or frontal reference plane, profile planes of projection, first and third angle methods of projection. Orthographic projections on principal planes. Sectional views: - full, half sectional views

Unit II: Isometric Projections

Principles of Isometric projection – Isometric Scale, Isometric Views, Conventions; Isometric Views, Simple Solids; Conversion of Isometric Views to Orthographic Views and Vice-versa, Conventions

Textbooks:

- 1. "Elementary drawing", N. D Bhatt, Charotar Publishing house, Anand India, ISBN 978-93-80358-96-3
- 2. "Text Book on Engineering Drawing", K.L.Narayana & P.Kannaiah, Scitech Publications, Chennai.
- 3. Hajra Choudhury S.K., Hajra Choudhury A.K. and Nirjhar Roy S.K., "Elements of Workshop Technology", Vol. I 2008 and Vol. II 2010, Media promoters and publishers private limited, Mumbai.

Reference Books:

- 1. "Engineering Drawing", DhananjayJolhe, Tata Mcgraw-Hill Publication.
- 2. Principals of Engineering Graphics, Frederick E. Giesecke, Alva Mitchell & others, Maxwell McMillan Publication.ISBN-13: 978-0023428203, ISBN-10: 0023428201

3. Gowri P. Hariharan and A. Suresh Babu,"Manufacturing Technology – I" Pearson Education, 2008.

Content to be covered in Practical's (In 2 Sections) Five Assignments on A2 (420×594 mm) size-drawing sheets as given below:

- 1. Sheet No .1: Minimum four problems on Projection of lines and Planes
- 2. Sheet No. 2: Minimum two problems on Projection of Solid.
- 3. Sheet No. 3: Minimum two problems on orthographic projections.
- 4. Sheet No. 4: Minimum two problems on Isometric projections.
- 5. Sheet No. 5: Minimum two problems on Development of Lateral Surfaces.

Mechanical Workshop & Manufacturing processes (Workshop Practical's)

 Turning Job: One turning job in two students on a lathe machine involving plain turning, taper turning or step turning, Knurling, chamfering and centre drilling operation.
 Carpentry Job : One job in a group of 4-5 students involving different carpentry joints.

3. Welding Job :One job in a group of 4-5 students involving different welding joint using arc welding machine.

4. Tin Smithy Job: One utility job involving different operations such as cutting, marking, notching, folding, bending, spot welding, riveting and soldering or brazing.

5. Demonstration about following processes in a group of 20-25 students.

A) Plastic Injection Moulding : Introduction, principle, equipment & it's operation, die introduction & setting, safety precautions. Demonstration of one utility job.

B) Forming: Introduction, hand press, different dies such as simple die, compound die, progressive die and its application.Demonstration of one utility job.

C) Moulding & Casting: Demonstration of mould in group of 4-5 students and one aluminium casting job.

D) Fitting : Demonstration of one fitting job involving 3-4 operations eg.sawing,filing,drilling,tapping etc.

Energy, Water, Environment Sustainability (ES10207A)

Credits: 2 Lecture (L): 1 hr./week Futorial (T): 1 hr./week Prerequisite course(s): 10 + 2 Course Objective(s): To in environmental systems. Course Outcomes: Jpon completion of the course, s 1. Understand the resources 2. Understand the system of Unit I: Energy	ntroduce students v	concep will be at	SCE - ots of e	ESE - energy 1	PR/OR -	TW 25	Total 25
Futorial (T): 1 hr./week Prerequisite course(s): 10 + 2 Course Objective(s): To in environmental systems. Course Outcomes: Jpon completion of the course, s 1. Understand the resources 2. Understand the system of	ntroduce students v	concep will be at		- energy 1	- resources		25
Course Objective(s): To in environmental systems. Course Outcomes: Jpon completion of the course, s 1. Understand the resources 2. Understand the system of	ntroduce students v	concep will be at		energy 1	esources		
Course Objective(s): To in environmental systems. Course Outcomes: Jpon completion of the course, s 1. Understand the resources 2. Understand the system of	ntroduce students v	concep will be at		energy 1	esources	and	
environmental systems. Course Outcomes: Jpon completion of the course, s 1. Understand the resources 2. Understand the system of	students v of energ	will be ab		energy r	resources	and	
Jpon completion of the course, s1. Understand the resources2. Understand the system of	of energ	y.	ole to			and	
 Understand the resources Understand the system of 	of energ	y.	ole to				
2. Understand the system of							
	environ						
Jnit I: Energy		mental er	ngineering	g.			
1) Power Generation: Co	onventio	nal and	Non-con	ventiona	1 Energy	Sources	s. Their
Advantages, Disadvantages, Im							
Status of Power Generation in		-					
Organizations.							
2) Economics of Power Ger	neration:	Cost of	Electric	Energy, I	Fixed and	Operatio	ng Cost
Load Curves.	1 т			C1 1 1		1	1.00
3) Thermal Power Plant: Ge Circuits.	eneral La	ayout of 1	Modern	hermal I	Power Pla	nt with o	ameren
4) Hydroelectric Power Pla	nt [.] Site	Selection	n Classif	ication o	f HEPP (based o	n Head
Nature of Load, Water Quantity			-		, including (Jousea o	ii iicuu
5) Solar Power Plant: Based	/ ·				, Parabolic	c Solar C	ollector
Working Principal, Applications			-				
6) Tidal and Wind Power					ciple, Pov	wer Calo	culation
Classification of Wind Turbines	, Operati	ing Chara	acteristics	•			
Unit II: Water, Environment S							
 Sustainability: Introduction, Power Generation and Environm Air Pollution: Sources, Caus Discussion on any one case study 	nental Pa ses, Effe	arameters	such as A	Air, Wate	r, Land an	d Noise	etc.
 Water Pollution: Sources, Pollution, Discussion on any on 	Causes,		and Ren	nedial M	leasures t	o contro	ol Wate
4) Land Pollution: Sources, Cau Discussion on any one case stud	ises, Effe	•	Remedial	Measures	s to contro	l Land P	ollution
5) Noise Pollution: Sources, Cau Discussion on any one case stud	uses, Effe	ects and R	emedial	Measures	to control	l Noise P	ollution

List of Tutorials:

1. Assignment on energy resources and applications such as electrical vehicles or hybrid vehicles or electrical batteries etc.

2. Assignment on principle and working of different types of power plants.

3. Assignment on criterion (such as operating cost, site selection etc.) of different types of power plants.

4. Assignment on calculation of electricity bill for small house having 5 tube lights and 5 fans.

5. Numericals on units of measurement of air pollutant for gas and particulate matter BOD calculation.

6. Case Study / Power Point Presentation on Pune city / Local environmental issues such as air pollution control system.

7. Case Study / Power Point Presentation on Pune city / Local environmental issues such as waste water management.

8. Case Study / Power Point Presentation on Pune city / Local environmental issues such as solid / hazardous waste (including e waste) waste management.

9. Case Study / Power Point Presentation on Pune city / Local environmental issues such as noise pollution control system.

10. Poster presentation on any topic related to energy and environmental engineering system.

Textbooks:

1. Domkundwar & Arora, Power Plant Engineering, Dhanpat Rai & Sons, New Delhi

2. R.K. Rajput, Power Plant Engineering, Laxmi Publications New Delhi

3. S.K. Garg, Environmental Engineering (Vol. II), Sewage Disposal and Air Pollution, Khanna Publishers

4. Peavy, Rowe and Tchobanoglous, Environmental Engineering, Tata McGraw-Hill Book Company

Reference Books:

1. E.I. Wakil, Power Plant Engineering, McGraw Hill Publications, New Delhi

2. P.K. Nag, Power Plant Engineering, McGraw Hill Publications, New Delhi

3. Metcalf Eddy, Wastewater Engineering, Treatment and Reuse, McGraw Hill Education

4. A.K. De, Environmental Chemistry 4th Edition, New Age International Publishers

Logical Reasoning - (ES10208A)

Teaching Scheme		Ex	aminatio	n Schem	ie		
Credits: 2	CIE	ISE	SCE	ESE	PR/OR	TW	Total
Lecture (L): 1 hr/week							
Tutorial (T): 1 hr/week	-	-	-	-	-	25	25
Prerequisite course(s): Basi	c mathema	atics and	logical th	inking	1 I		
Course objectives:							
To enable the learne	r to und	erstand	and use	logical	reasoning	for	
competitive exams							
Course Outcomes:	1 4 11	1 11 .					
Upon completion of course, stu				ing for S	oming Pr A.		
1. To solve simple probler Relations, Directions, S	1 •	0 0		•		lalogy, r	51000
2. To apply basic concepts	•	•				problem	s iisino
judgment and choice.			linodolog	y on even	lyddy llie j	problem	s using
Unit I							
Series & Analogy, Blood Rel	lations. D	irections.	Seating	Arrange	ment (Lin	ear & d	circular)
Clocks & Calendars	,	,	0	U	× ×		,
Unit II							
Venn Diagrams - Two sets, C	ubes & D	ices. Bin	arv Logi	c. Statem	nents & C	onclusio	ns. Data
Sufficiency		,		-,			,
Textbooks:							
1. R. S. Aggarwal, "A Modern	Approach	to Logic	al Reason	ing", S.	Chand Pub	olication	•
Reference Books:							
1. 1. Peeyush Bhardwaj,	"The Har	nds-on G	uide to	Analytic	al Reason	ing and	Logica
1. 1. 1 Ceyushi Dhalawaj,	1 1						
Reasoning", Anhant Pu	blication.						
		or Logical	l Reasoni	ng", McO	Graw Hill I	Publicat	ion.
Reasoning", Anhant Pu	Prepare fo	-		-		Publicat	ion.

Calculus (ES10201B)

		Exa	aminatio	n Schem	e		1
Credits: 4	CIE	ISE	SCE	ESE	PR/OR	TW	Total
Lecture (L): 3 hrs./week Tutorial (T): 1 hr./week							
	20	30	20	30	-	25	125
Prerequisite course(s): Basics	of deriv	atives, in	tegration	and plan	e geometr	y.	
Course objectives:							
It aims to equip the students wit		-					
advanced level that will serve th			-	more adv	anced lev	el of	
mathematics and applications th	hat they v	vould fin	d useful .				
Course Outcomes:		1. a. a. h. 1. a. 4	-				
Upon completion of course, stud				1	:		I
1. Apply the knowledge of par							
approximation and in findin	0						
2. Apply advanced techniques	-						
Gamma functions needed in 3. Learn the Fourier series repu			-				
periodic continuous and disc			inionic ai	larysis ic	n design a	inu anary	515 01
4. Apply the effective mathem	•		utions of	first orde	or differen	tial aqua	tions
that model physical processe		15 101 501		mst oru		liai cqua	110115
5. Demonstrate the nature of c		- Cardioi	de Astroi	id Lemni	scate Ros	e	
curve by tracing the same ar							
 Evaluate multiple integrals a 			-			in it's v	arious
applications.	ina appij		inteage of	manipi	megruis		
Unit I – Partial Differentiation							
		1 D (· 1 D ·	·	1 1 171		
Introduction to functions of sever Homogeneous functions, Partial							
Unit II – Applications of Partia						valive.	
				<i>.</i> .	1		
Jacobian and its applications, Err					nd Minim	a of fund	ctions of
two variables, Lagrange's method Unit III – Integral Calculus and			multiplie	ers.			
0							
Doduction Formulas Common on	d Beta fu	nctions,	Full range	e Fourier	series, Ha	alf range	Fourier
Reduction Formulae, Gamma and							
series, Harmonic analysis.			- 4				
	s and the	ir applic	ations				

Unit V – Curve Tracing

Tracing of Curves- Cartesian, Polar and Parametric Curves, Rectifications of curves.

Unit VI – Multiple Integrals and their applications

Double integration, Change of order of integration, Triple integration, Applications of Multiple Integrals.

Text Books

- 1. Higher Engineering Mathematics by B.S.Grewal, Khanna Publisher.
- 2. Higher Engineering Mathematics by B.V.Ramana., Tata McGraw Hill Publisher
- 3. Higher Engineering Mathematics by H.K.Dass., S.Chand Publication
- 4. Advanced Engineering Mathematics by Erwin Kreyszig, John Wiley & Sons.

Reference Books:

- 1. Advanced Engineering Mathematics by Peter O'Neil, Global Engineering, Publisher.
- 2. Textbook of Applied Mathematics (Volume I & II), by P.N.Wartikar & J.N. Wartikar Pune Vidhyarthi Griha Publisher.
- 3. Advanced Engineering Mathematics by C.Ray Wylie and L.Barrett, McGraw Hill Publications.
- 4. Advanced Engineering Mathematics by M.Greenberg, Wiley Publications.

List of Tutorials

- 1. Evaluation of partial derivatives, Euler's theorem on homogeneous functions
- 2. Partial derivative of Composite Function, Total Derivative.
- 3. Jacobian, Errors and approximations
- 4. Maxima and minima of functions of two variables, Lagrange's methods of undetermined multipliers
- 5. Reduction formulae, Gamma function, Beta function
- 6. Fourier Series and Harmonic analysis
- 7. Solution of Exact differential equations and Linear differntial equations
- 8. Solution of Non-linear differential equations and Bernoulli's equations
- 9. Tracing of cartesian and parametric curves
- 10. Tracing of polar curves, rectification of curves

Python for Engineers (CS10202B)

Teaching Scheme	Examination Scheme							
Credits: 3 Lecture (L): 2 hrs./week	CIE	ISE	SCE	ESE	PR/OR	TW	Total	
Practical (P): 2 hrs./week	20	30	20	30	-	25	125	

Prerequisite course(s): Basic of Coding Syntax.

Course Objective(s):

- 1) Acquire the knowledge of Python, script programming language.
- 2) Understand the flow of programming.
- 3) Acquaint with different tools in python.
- 4) Understand and implement file handling concept in Python.

Course Outcomes:

Upon completion of the course, students will be able to

- 1) Understand basics of python programming.
- 2) Develop and implement control statements, functions with packages.
- 3) Apply Numpy and plotting tools in python.
- 4) Create and apply file handling operations.

Unit I: Introduction to python

Script Model Programming, Understanding Python variables, basic Operators, Declaring and using Numeric data types: int, float, complex, Using string data type and string operations, Defining list and list slicing, List manipulation using in build methods, Use of Tuple data type , Dictionary manipulation .

Unit II: Python Program Flow Control, functions and packages

Conditional blocks using if, else and elif, Simple for loops in python ,For loop using ranges, string, list and dictionaries ,Use of while loops in python , Loop manipulation using pass, continue, break and else. Programming using Python conditional and loops block. Programming using string, list and dictionary in build functions. Organizing python codes using functions , Understanding Packages Powerful Lamda function in python Programming using functions, modules and external packages.

Unit III: Numpy and Matplotlib

What is Numpy? How to install Numpy, Arrays, Array indexing, Array Vs Listing Data types, Array math, Broadcasting. Matplotlib -Plotting, subplots and images.

Unit IV: Python file operation

Reading config files in python, Writing log files in python, Understanding read functions, read(), readline() and readlines(). Understanding write functions, write() and writelines(). Manipulating file pointer using seek. Programming using file operations.

Laboratory work

Practical Assignments List(Any 6 Lab assignments)

- 1. Install Anaconda and Anaconda Navigators (use of spyder, Jupyter and colab notebook).
- 2. Implement Basics of python:
 - a. Write a program to read (input ()) Celsius temperature and print (print ()) equivalent Fahrenheit temperate on screen.
 - b. Write three functions that calculate the remainder of two integers by using: (a)the basic operators of +, -, * and / (why is // not required?)
 (b)the divmod function(c)the % operator
 - c. Copy-paste this super-nested Python list-dictionary: Test=[{'Arizona': 'Phoenix', 'California': 'Sacramento', 'Hawaii': 'Honolulu'}, 1000,2000,3000,['hat', 't-shirt', 'jeans', {'socks1': 'red', 'socks2': 'blue'}]](a)Return 2000 on your screen.
 (b)Return the dictionary of the cities and states on your screen. (This=[{'Arizona': 'Phoenix', 'California': 'Sacramento', 'Hawaii': 'Honolulu'}. (c)Return the list of the clothes on your screen! (This,['hat', 't-shirt', 'jeans', {'socks1': 'red', 'socks2': 'blue'}]) (d) Return the word 'Phoenix' on your screen. (e) Return the word 'jeans' on your screen.
- 3. Write a Python program to check whether a character is uppercase or lowercase alphabet.
- 4. Write a Python program to Print your name 10 times using for loop.
- 5. Write a Python program to print Fibonacci series up to n terms.
- 6. Create a Python script that finds out your age in a maximum of 10 tries. The script can ask you only one type of question: guessing your age! (e.g. "Are you 67 years old?") And you can answer only one of these three options: (a)Less (b)More (c)Correct
- 7. Write a Python program to find factorial of given number (using fact() function).
- 8. Write a python program to create two 3X3 random matrixes and perform following operation: (a) Addition (b) subtraction (c) multiplication and display shape, dimensions, dtype, Rank and flatten output of every o/p matrix.
- 9. Write a Python program to plot line chat, bar chart, pi chart, scatter chart, histogram for taking two different arrays as input.
- 10. Write a Python program to read a given .txt file and count total number of 'the' in the given file, find total words and total lines in the file.

Textbooks:

- 1. Python Programming, McGraw Hill Education, Ashok and Amit Kamthane.
- 2. Python Programming by Adam Stewart.
- 3. Python Programming for the absolute Beginners, Third edition, Michael Dawson.
- 4. Python programming by Krishna Rungta.
- Python Crash course, 2nd Edition, Ahands on, project based introduction to programming, Eric Matthes.

Reference Books:

- 1. Python Data Analytics with Pandas, Numpy and Matplotlib by Fabio Nelli.
- 2. Dive into Python, Mike
- 3. Learning Python, 4th Edition by Mark Lutz
- 4. Programming Python, 4th Edition by Mark Lutz.
- 5. Python Data Science Handbook: essential Tools for working with data by Jake Vander Plas.

Basic Electronics Engineering (ET10203B)

Teaching Scheme		Exa	aminatio	n Schem	e		
Credits: 3	CIE	ISE	SCE	ESE	PR/OR	TW	Total
Lecture (L): 2 hrs./week Practical (P): 2 hrs./week							
ractical (1). 2 ms./week	20	30	20	30	-	25	125
Prerequisite course(s): Physic	s						
 Course Objective(s): 1. To impart knowledge of semi operational characteristics & 2. To introduce electronic circulow frequency. 3. To simulate electronics circulow frequency. 3. To familiarize the students operational amplifier. Course Outcomes: Upon completion of the course, set 1. Understand construction and we switch circuits. 3. Understand the working of MO 4. Illustrate and explain the work Unit I: Diode Circuits 	iconducto applicati uits using cuits usin with d students working or rking an OSFET a cing of si	ons. g BJT and ng comp ifferent will be al of diode t d charact nd power mple Lin	d MOSFF uter simu linear int ole to co analyze reristics of devices f ear Integr	ET device ulation set tegrated e diode ap of BJT to for variou rated circ	es for sma oftware to circuits to pplication to constru- us electron cuits using	all signal o obtain using s. uct ampli ics appli	and at desired fier and ications.
Full-wave rectifiers(center tap working, Characteristics, & its their applications.	pped ,Du	ual comp	olementar	y bridge	e rectifier), Zener	· diode-
Unit II: Bipolar Junction Tran	sistor (E	BJT) Cire	cuits				
BJT types, structure, operatio Emitter CE, Common Base CB divider biasing, Bias stabilizatio LC oscillators.	B, Comm	on Collee	ctor CC c	onfigura	tion, DC l	load line,	voltage
Unit III: Field-Effect Transisto	or (FET)	and Pov	ver Devi	ces			
Introduction of FET, Types of channel E-MOSFET, V-I ch configurations- Common-Sou follower), and Common-Gat characteristics and application	aracteris arce (CS) e (CG)	tics. MO) amplifi amplifier	SFET bi er, Comr r. Power	asing cin non-Drai Devices	rcuit, MC in (CD) a s- Constru	OSFET a umplifier uction, v	mplifier (source

Unit IV: Linear Integrated Circuits

Introduction to operational amplifiers, Block diagram of OP-AMP, Ideal characteristics of OP-AMP, Positive feedback, Negative feedback, Inverting & Non inverting Amplifier, Comparators, Summing amplifier, Difference amplifier. Voltage Regulator – 3 terminal Fixed & variable.

Text books:

- 1. Floyd, "Electronic Devices and Circuits", Pearson Education.
- 2. Robert L. Boylestad, Louis Nashelsky-"Electronic Devices and Circuit Theory" -Prentice Hall.
- 3. David A. Bell, "Electronic Devices and Circuits", 5th Edition, Oxford press.
- 4. N.P. Deshpande, " Electronic Devices and Circuits", McGraw-Hill Education (India) Pvt Ltd.

Reference Books:

- 1. Albert Malvino, "Electronic principles",7thEd,TataMc-Graw-Hill.
- 2. Ramakant Gaikwad, "Linear Integrated Circuits", Pearson Education.
- 3. Donald Neamen, "Electronic Circuits Analysis and Design", 3rd Edition, TMH.
- 4. Jacob Millman, Christos C. Halkias, " 5th Edition Integrated Electronics Analog And Digital & System", McGraw-Hill.

Laboratory work

A) List of experiments (Any 6 out of the following experiments)

- 1. Demonstration of CRO for its usage in test and measurements.
- 2. Demonstration of DMM for its usage in test and measurements.
- 3. Demonstration of Function generator for its usage in test and measurements.
- 4. Simulate half wave and full wave rectifier circuits using diode and observe input and output waveforms.
- 5. Simulate BJT as a switch using LED as a display device.
- 6. Simulate LC/RC oscillator using BJT.
- 7. Simulate Single Stage MOSFET Common Source amplifier circuit with bypass capacitor.
- 8. Simulate Inverting and Non Inverting amplifier using Opamp.

B) PBL/Seminars

Materials Science-[ES10209B]

Teaching Scheme		Exa	aminatio	n Schem	e		
Credits: 3 Lecture (L): 2 hrs./week	CIE	ISE	SCE	ESE	PR/OR	TW	Total
Tutorial (T): - hr. Practical (P): 2 hrs./week	20	30	20	30	-	25	125
Prerequisite course(s): Chem	istry 10+	2 level					•
Course Objective(s):	• 1 1	1 0	4 · 1	4 11	.1 .		
To provide the students with bas property relationship in appropri		-			them to t	ise struc	lure-
Course Outcomes: Upon completion of the course, 1. Explain science of mater alloys and smart material 2. Explain polymers and sp	ials like I Is	Portland o	cement, re	·	·		
polymer recycling		-		-			
3. Explain chemical and ele prevention of corrosion.	ctrochen	ncal corr	osion aloi	ng with n	nethods u	sed for	
4. Explain and identify mat diffraction, UV and IR sp		•		terisation	n techniqu	es like X	ray
5. Use PBL/Seminars as a t			1.	of conce	pts in Ma	terial sci	ence
Unit I: Science of Engineering	Materia	ls					
Introduction Basis of material selection Materials for construction ind Setting and hardening of cement Refractory and Fly ash bricks- Metal Alloys: Introduction, clas Smart materials: Introduction, Shape memory alloy, Piezoelect Rheological Fluids, Electro-Rhe	, ISI spec - sification classifica ric mater	tion, Engined tion, type ials, Mag	s of Portla ering appl es of sman netostrict	and ceme lications rt materia ive Mate	ent Il and thei rials, Mag	r applica	
Unit II: Engineering Polymers							
Introduction- Some basic defir Thermoplastic, Thermosetting po Properties of polymers: Molect Specialty Polymers Conducting polymers, Liquid Cr	olymers, ular weig	Vitrimers ht, Crysta	allinity, T	g, Tm			-

Unit III: Corrosion Science

Corrosion Science: Introduction, Types of corrosion, Mechanism of chemical and electrochemical corrosion, Galvanic corrosion and Concentration cell corrosion **Factors influencing corrosion**- nature of metal, nature of environment **Methods of corrosion control**: cathodic and anodic protection

Protective coatings: surface preparation, types of protective coatings: a) metallic coatings: types of coatings, methods of applications, (hot dipping, cladding, electroplating & cementation), electro less coatings, b) non-metallic coatings: chemical conversion coatings, powder coatings

Unit IV: Material characterization Techniques

X-ray diffraction technique

Spectroscopic Techniques - Fundamentals of spectroscopy,

- a) Ultraviolet (UV)-Visible spectroscopy- Principle of UV-Visible spectroscopy, Beer-Lambert's law, Types of electronic transitions, Terms related to UV – Visible spectroscopy, Instrumentation of UV – Visible spectroscopy, Applications of UV-Visible spectroscopy
- b) **Infrared (IR) spectroscopy** –Principle of IR spectra, requirements of IR absorption, Calculation of vibrational frequency, Modes of vibration, Factors influencing IR spectra, Instrumentation of IR spectroscopy, Applications of IR spectroscopy

Study of morphology: Optical and Electron microscopy

Textbooks:

- 1. Materials Science and Engineering: An Introduction. W. D. Callister, D. G. Rethwisch. 10th Ed., Wiley publication
- 2. Engineering Chemistry- Jain and Jain, Dhanpat Rai and CO.
- 3. Engineering Chemistry O. G. Palanna, Tata McGraw Hill Education Pvt. Ltd.
- 4. A Textbook of Engineering Chemistry Shashi Chawla, Dhanpat Rai and CO.
- 5. An introduction to Metallic Corrosion and its prevention Raj Narayan (Oxford and IBH, 1983)
- 6. Text Book of Material science and Metallurgy O P Khanna (Dhanpat Rai & Sons, 1984)

Reference Books:

1. Basic Concept of Analytical Chemistry, 2ed , S. M. Khopkar, New Age-International Publisher

2. Instrumental Methods of Chemical Analysis, G. R. Chatwal& S. K. Anand, Himalaya Publishing House

3. Spectroscopy of organic compounds, 2 ed, P. S. Kalsi, New Age-International Ltd., Publisher

4. Polymers: Chemistry and Physics of modern materials, J.M.G. Cowie, Valeria Arrighi, 3rd edition, CRC press

5. Smart Materials and Structures, M. V. Gandhi and B. S. Thompson, Chapman and Hall,

London, First Edition, 1992.

A) List of experiments (Any 6 out of the following experiments)

- 1. (A)Chemical safety and disposal (B) Determination of error and error analysis
- 2. Determination of calcium in cement
- 3. Determination of loss on ignition of Portland cement
- 4. Determination of Copper from Brass
- 5. Determination of Iron from Steel
- 6. Determination of molecular weight by viscosity of polymer
- 7. Preparation of polymers
- 8. Determination of rate of corrosion in different pH media
- 9. Colorimetric estimation of Fe^{+3} from a given sample
- 10. Virtual lab experiment- Molecular Absorption Spectroscopy
- 11. Virtual lab experiment-Basics of Scanning Electron microscopy

B) PBL/Seminars

One project/seminar based on syllabus of Material Science

Bansilal Ramnath Agarwal Charitable Trust's Vishwakarma Institute of Information Technology, Pune-48 (An Autonomous Institute affiliated to Savitribai Phule Pune University) Department Engineering & Applied Sciences

Smart Sensors (ES10205B)

		(,			
Teaching Scheme		Exa	aminatio	n Schem	e		
Credits: 2 Lecture (L): 1 hr./week	CIE	ISE	SCE	ESE	PR/OR	TW	Total
Tutorial (T): 1 hr./week	-	-	-	-	-	25	25
Prerequisite course(s): Basic	concepts	of Electr	onics De	vices			•
 Course Objective(s): To introduce fundament design of signal conditi hardware. To introduce current stat techniques and real life e systems. 	oning cir e of art fo	cuits for or SMAR	the purp T materia	ose of in Ils and Sr	terfacing nart senso	with em ors, Fabri	bedded cation
 Explain the process and process and sensors Explain the best uses of s Unit I: Introduction of Basic	smart sen Transdu	sors in th cers, Ser	e IOT and	d Industri	al domain	n.	ing
Introduction of Basic Transd Introduction of Instrumentation				minolog	y, Differe	ent Trans	duction
principles,							
Transducers for :- Displacem	ent, Velc	ocity and	Motion				
Sensor Introduction :- Proxim Pressure, Flow, Level, pH and <i>and sensing methods</i>).							meters
B] Op-Amp Based Signal con	ditionin	g					
Analog signal conditioning Instrumentation amplifiers	for dif	ferent s	ensors -	– Use	of bridg	ge circu	its and
Op-Amp based Signal converte	ers like V	//I and I/	V conver	ters,			

Signal Conditioning of Digital Sensors: proxy, accelerometer, GPS, compass

Unit II: Introduction and Applications of Smart Sensors in IOT and Industry 4.0

A] Smart Sensors:

Architecture of Smart Sensors: Important components, their features, SMART Materials.

Evolution of Smart Sensors, Advantages, Application area of Smart Sensors,

B] Use of Smart Sensors in IOT enabled devices and in Industry 4.0:

Discussion on Fabrication Methods of - CMOS, MEMS, System on Chip (SOC), Micro machined sensors.

Need of Smart Sensors in IOT, ROBOTICS and Modern industrial applications,

Textbooks:

- 5. David G. Alciatore, Michael B Histand; "Introduction to Mechatronics and Measurement System"; Tata Mc Graw Hill
- 6. Operational Amplifiers and Analog Integrated Circuits by Franco S. McGraw Hill International Edition, 1988

Reference Books:

- 1. S.C. Mukhopadhyay · G.S. Gupta: "Smart Sensors and Sensing Technology" Springer
- 2. Understanding Smart Sensors by Randy Frank, Artech House sensors library 7th Edition

List of Tutorials:

- 1. A Smart Temperature Sensor
- 2. A Smart Hall effect based Sensor
- 3. SMART Streetlights
- 4. Smart City Applications
- 5. Smart Fridge
- 6. Smart Washing Machine
- 7. Smart Military Applications
- 8. SMART DUST
- 9. Non-contact based temperature measurement for COVID-19 patients.
- 10. COVID-19 patient vicinity detection by smart sensor hubs.

Engineering Mechanics (CV10206B)

Teaching Scheme		Examination Scheme						
Credits: 3 Lecture (L): 2 hrs./week	CIE	ISE	SCE	ESE	PR/OR	TW	Total	
Tutorial (T): 1 hr./week	-	-	-	-	-	50	50	

Prerequisite course(s): Physics, Mathematics

Course Objective(s):

To apply the principles of mechanics to practical engineering problems.

To develop simple mathematical model for engineering problems and carry out static analysis. To carry out kinematic and kinetic analyses for particle.

Course Outcomes: Upon the completion of the course, students will be able to

- 1. Classify force system and perform resolution and composition of forces.
- 2. Interpret and apply principles of statics for coplanar force system with and without dry friction on horizontal and inclined plane.
- 3. Determine centroid and moment of inertia of plane laminae.
- 4. Apply principles of kinematics and kinetics to determine position, velocity and acceleration of particles in linear and curvilinear motion.

Unit I: Resolution and composition of forces.

Introduction - Fundamental concepts, Laws of mechanics, force and it's characteristics, system of forces, resolution and composition of forces.

Coplanar force system - Moment of a force, couple, Varignon's theorem of moments, resultant of concurrent, parallel and general coplanar forces.

Unit II: Equilibrium of Forces

Free body diagram, equilibrium of Coplanar force systems, two force and three force members Types of supports, Types of loads – (point loads and uniformly distributed loads and moments only) Application of equilibrium equation to simply supported, cantilever beam.

Friction- characteristics and laws of dry friction, friction on horizontal and inclined plane surfaces, wedge friction.

Unit III: Centroid and moment of inertia of plane laminae

First and second moment of area, centroid and moment of inertia of plane laminae, Parallel and perpendicular Axis Theorem, Polar Moment of Inertia – Radius of gyration.

Unit IV: Introduction to Dynamics

Kinematics of Particle : Rectangular co-ordinate system, Normal and Tangent system, relation between rectangular system and normal and tangent components of acceleration. Rectilinear Motion: uniform acceleration and variable acceleration motion, Curvilinear Motion: Circular motion, projectile motion on horizontal plane Kinetics of particle : Newton's second law of motion and it 's application to types of motion

mentioned above.

Textbooks:

- 1. Mechanics for Engineers Fourth Edition, by F. P. Beer and E. R. Johnson, McGraw-Hill Publication.
- 2. Engineering Mechanics S. S. Bhavikatti, K. G. Rajashekharappa, New Age International (P) limited publisher
- 3. Tayal A. K., Engineering Mechanics- Statics and Dynamics, Umesh Publications

Reference Books:

- 1. Engineering Mechanics statics and dynamics by J. L. Meriam and Craige, John Willey and Sons Publication.
- 2. Engineering Mechanics Statics and dynamics by R. C. Hibbeler, McMillan Publication.

Personality Development and Professional Ethics (ES10207B)

Teaching Scheme		Exa	aminatio	n Schem	e		
Credits: 02	CIE	ISE	SCE	ESE	PR/OR	TW	Total
Lecture (L): 1hr./week Tutorial (T): 1hr./week							
	-		-	-	-	25	25
Prerequisite course(s):-		1	1	L	1		
Course Objective(s):							
 To discuss various aspec To discuss Professional 					n and its c	ode of e	thics
Course Outcomes:		U					
Upon completion of the course	e, students	will be al	ole to				
1. Evaluate strength and wea		ugh SWC	OT analys	is			
2. Set personal and profession	nal goals						
3. Understand engineering as	a professi	on					
4. Understand code of ethics la	uid by prof	essional b	ody e.g.	NSPE			
Unit I: Personality Developme	ent						
analysis, attitude and motivation conflict and stress management (SMART), time management, managerial skills	it, problem	solving	skills, inte	erpersona	l relations	s, goal se	etting
Unit II: Professional Ethics							
Profession, Engineering as a p Professional model, Ethics, Co perspectives, Professional bod obligations, ethical dilemma, s	ode of ethic ies for eng	cs, Code o ineering o	of conduc ethics, NS	t, Ethics	from engi	neer's	
Textbooks:							
 Swami Vivekanand, "P Ramakrishna Mission (2 Heller, Robert, "Effectiv 3. NSPE code of Ethics: Na 	011) re leadersh	ip. Essen	tial Mana		•		
Reference Books:							
1. Charles E. Harris, Mich concepts and cases", Fourth 2. Engineering ethics in prac	Edition, W	Vadswortl	h, Cengag	ge Learni	ng,2009	C	C

Quantitative Aptitude - (ES10208B)

Teaching Scheme		Exa	aminatio	n Schem	e		
Credits: 2	CIE	ISE	SCE	ESE	PR/OR	TW	Tota
Lecture (L): 1 hr/week							
Tutorial (T): 1 hr/week	-	-	-	-	-	25	25
Prerequisite course(s): Basic	mathema	atics	1	L	1 1		1
Course objectives: To enable the learner to underst exams	tand and	use quan	titative ap	otitude fo	or compet	itive	
Course Outcomes:							
 Upon completion of course, stud To solve simple problem To apply basic concepts of problems. 	is employ	ing quan	titative ap				everyda
Unit I							
Percentages, Ratio, Proportion Unit II							
Time & Work, Pipes & Cisterns & Combination	, Time, S	peed & E	Distance,	Trains, B	oats & Ra	ces, Peri	mutatio
Text Books							
Dr. R. S. Aggarwal, "Quantitativ	ve Aptitu	de for Co	mpetitive	Examina	ations", S.	Chand	
Publications.							
Publications. Reference Books:							
Reference Books:	re for Qu	antitative	Aptitude	". Tata N	lcGraw H	ill.	
Reference Books: 1. Arun Sharma, "How to Prepa 2. K. Sarvesh Verma, "Quantita			-				Arihar
Reference Books: 1. Arun Sharma, "How to Prepa	tive Apti	tude Qua	ntum Cat	Common	n Admissi	on Test"	

German (Audit Course)

Teaching Scheme	Examination Scheme										
Credits: -	CIE	ISE	SCE	ESE	PR/OR	TW	Total				
Lecture (L): 1hrs./week											
	-	-	-	-	-						
Prerequisite course(s):-											
Course Objective(s):											
 To enable the students to un everyday context 	nderstand	the basic	language	structures	in Germa	n which a	are used in				
2. To read, understand & write	simple ar	nd correct	German								
3. To be able to communicate	in German	using sin	nple grami	nar struct	ures and a	core voca	ubulary				
 able to communicate (read, w aware of the close connection able to obtain awareness about view' 	between	German a	nd English			C C	c				
Course Content											
1. Introduction to German Lan	σιιασe · In	troduction	to script	Ordinal N	Jumbers						
 Basic vocabulary for self int 			•								
3. Colors, Days of the week		,8-									
4. Declension of Nouns											
5. Nominative and Accusative	cases, Ne	gation wit	h "kein/e/e	er"							
6. Plural/Modal Verbs											
7. Personal Pronouns, Preposit	ions										
8. Conjugation of verbs in Pres	sent Tense	and Prese	ent Perfect	Tense							
9. Separable and Inseparable V	erbs										
10. Telephone Conversations											
Textbooks/ Reference Books:											
Netzwerk A1, Goyal Publishers & Schmitz, Tanja Sieber	Distributo	rs Pvt Ltd	, Author –	- Stefanie	Dengler, P	aul Ruscl	n, Helen				

Bansilal Ramnath Agarwal Charitable Trust's Vishwakarma Institute of Information Technology, Pune-48 (An Autonomous Institute affiliated to Savitribai Phule Pune University) Department Engineering & Applied Sciences

Departme	French	e			1003		
Teaching Scheme		``````````````````````````````````````	aminatio		e		
Credits: - Lecture (L): 1hr/week	CIE	ISE	SCE	ESE	PR/OR	TW	Total
	-	-	-	-	-	-	-
Prerequisite course(s):							
Course Objective(s):							
1. To enable the students	to understa	and the b	asic lang	uage stru	ctures in	French v	which are
used in everyday contex	t						
2. To read, understand & w	rite simple	e and corr	ect Frenc	ch.			
3. To be able to commun	nicate in I	French us	sing sim _l	ple gram	mar struc	tures an	nd a core
vocabulary							
 Aware of the close connection languages. Obtain awareness about v 'world view' 				-			
Course Content							
1. Introduction to French Langu	age. Introc	luction to	script, C	ardinal &	amp;		
ordinal numbers							
2. Greetings & amp; Introduction	n- Self-Inti	oduction	, Introduc	cing other	r person		
3. Nationalities							
4. Days of the week, months of	the year ar	nd colors					
5. Conjugation of regular verbs	in Present	Tense					
6. Conjugation of irregular verb	s in Presen	t Tense					
7. Articles, Prepositions							
8. Asking and answering the qu	estions						
9. Telephone conversation							
10. Festivals of France							
Textbooks/ Reference Books							
Jumelage, Methode de Francai		1, Author	– Manjiı	ri Khande	ekar and R	loopa Lu	ıktuke,
Saraswati House Pvt Ltd, New	v Delhi						

Japanese (Audit Course)

Teaching Scheme		Exa	aminatio	n Schem	e		T
Credits: - Lecture (L): 1hrs./week	CIE	ISE	SCE	ESE	PR/OR	TW	Total
	-	-	-	-	-	-	-
Prerequisite course(s):							
Course Objective(s): 1. To meet the needs of ever	growing	industry	with resp	pect to lar	nguage suj	pport.	
2. To get introduced to Japan	nese socie	ety and cu	ulture thro	ough lang	guage		
3. To develop aptitude for la	anguage						
Course Outcomes:							
Upon completion of the course,	students	will be ab	ole to				
1. do basic communication in Ja	panese L	anguage					
2. get acquainted with Japanese	script						
3. get introduced to reading, wr	iting and	listening	skills				
4. develop interest to pursue pro	fessional	Japanese	e Languag	ge course			
Course Content							
1. Introduction to Japanese Lang	guage.						
2. Self-Introduction, Introducing	g other pe	erson					
3. Greetings and expressions							
4. Colors, Days of the week							
5. Hiragana basic Script, Hiraga	na : mod	ified Kan	a, double	consona	nt, Letters	s combin	ed with
ya, yu, yo Long vowels							
6. Numbers, Months, Dates, Tel	ephone n	umbers					
7. Stating one's age.							
8. Katakana basic Script, Modif	ied kana,	double c	onsonant,	, letters v	vith ya, yu	, yo, Loi	ng
vowels							
9. Denoting things (nominal &	prenomir	nal demor	nstratives)			
10. Describing time, describing	starting	& finishi	ng time (kara ~ m	ade) Poir	nt in time	e

Textbooks/Reference Books:

- 1. Minna No Nihongo, "Japanese for Everyone", Elementary Main Text book 1-1 (Indian Edition), Goyal Publishers & Distributors Pvt.
- 2. Nihongo shoho,
- 3. Haru 1 ,Maharashtra State Bureau of Textbook Production and Curriculum Research, Pune.

Bansilal Ramnath Agarwal Charitable Trust's Vishwakarma Institute of Information Technology, Pune-48 (An Autonomous Institute affiliated to Savitribai Phule Pune University) Department Engineering & Applied Sciences

English (Audit Course)

	8	(Auuit					
Teaching Scheme		Exa	aminatio	n Schem	e		
Credits: -	CIE	ISE	SCE	ESE	PR/OR	TW	Total
Lecture (L): 1hrs./week Tutorial (T): 0 hr.							
Practical (P): 0 hrs./week	-	-	-	-	-	-	-
Prerequisite course(s):							
Course Objective(s): 4. To acquire strategic com	netence	to use h	oth spok	en & wr	ritten land	mage to	excel in
competitive examinations	petenee	10 450 0	our spor		itteri iung	54450 10	encer m
5. To develop student's abili	ty to und	lerstand a	ind summ	arize the	given co	mnrehen	sions and
essays	ty to une	ionstanta e	ina sainin		Sivence	mprenen	biolib ulla
Course Outcomes:							
Upon completion of the course, st	udents w	vill be abl	e to				
1. express themselves using				communi	cation		
2. listen, recite and record th							
		-		•			
Course Content							
1. Application Writing							
2. Essay Writing							
3. Comprehension / Reading							
4. Listening Skills (Reading	the parag	graphs, Li	stening th	ne audio i	recording	s of lectu	res and
conversations and writing	both in b	orief)					
5. Speaking Skills (It can be		,	ing and li	stening ta	ask or pre	nare and	speak)
			-				speak)
6. Review Writing (Includes	listening	g and writ	ing)				
Textbooks/Reference Books:							
(i) Practical English Usage. Micha	ael Swan	. OUP. 1	995.				
(ii) Remedial English Grammar. I	F.T. Woo	d. Macm	illan.2007	7			
(:::) Or Walter Wall William 7:				1- 2001			
(iii) On Writing Well. William Zi	nsser. Ha	arper Res	ource Boo	ok. 2001			
(iv) Study Writing. Liz Hamp-Ly	ons and H	Ben Heas	ly. Camb	ridge Uni	versity Pı	ess. 200	6.
(v) Communication Skills. Sanjay	v Kumar a	and Push	pLata. Ox	ford Uni	versity Pr	ess. 201	1.
(vi) Exercises in Spoken English.	Parts. I-l	III. CIEF	L, Hydera	ıbad. Oxf	ford Unive	ersity Pre	ess