
[image: image1.png]Total No. of Questions : 12] [Total No. of Pages :4

P1049 [3064]-529
B.E. (Computer)
PRINCIPLES OF COMPILER DESIGN
(2003 Course) (410444)
Time : 3 Hours] i - [Max. Marks : 100

Instructions to the candidates :

i)
ii)
iii)
iv)

v)

Q1) a)

Q2) o

03) a)

Answers to the two sections should be written in separate answer books.
Neat diagrams must be drawn wherever necessary.

Figures to the right indicate full marks.

Your answers will be valued as a whole.

Assume suitable data, if necessary.

SECTION - I

Write LEX specifications and necessary C code that reads English words
from a text file and replaces every occurrence of the sub string ‘abc’
with ‘ABC’. The program should aiso compute number of characters,
words and lines read. It should not consider and count any line(s) that

begin with a symbol “#”. [12]
Discuss the merits and demerits of an interpreter and a compiler. [5]
OR

Why white space characters are generally not allowed in Identifier names.

(3]
Discuss the significance of lexemes with longest prefix with suitable
examples.) (31
With suitable example, discuss the significance of ordering of lexical
rules. : (31

Draw a neat diagram showing various phases of a compiler. With a suitable
example, write output of each phase. Discuss the advantages of designing
a compiler with a front and back end. [81

Construct LL(1) parser table for the following context-free grammar
G ={S,N, T, V}, Where S is the start symbol, N={ S, B, C, D, E, F }
is the set of non-terminal symbols and T = { a, b, ¢, f, g, h} is the set of
terminal symbols and set of production rules V = {

S = aBDh

B —cC

C->bC|E

D -EF

E—gl€
F > f|€}. Also show synchronizing entries. v [91

PT.O.

[image: image2.png]b)

Q4) a)

b)

Discuss the problems in top-down parsing. With suitable examples,

explain how they can be overcome? [8]
OR

Consider the LR(1) item set(s) given below. Specify whether there will

be any type(s) of conflicts in the LR parser table. Justify your answer in

each case. 9]
)k
A —>o.aP, b
B —>v.a
1; is an item set and assume that follow set of ‘B’ contains
symbol ‘a’. v
i L
A-a.a , A =20.,b
B -v..b B —~v.,a
i) I Ij
A-o.aB, b A -o.af, d
B —-v.c . " B >v.e

In both ii) and iii) above, I; and [; are two LR(1) item sets with two
items each as shown above. Can the two item sets in each of cases
ii) and iii) be merged while constructing LALR item sets? If so,
show the merged item sets for case (ii) and case (iii). Will there be
any conflicts in the LALR parser tables after their merger? Justify.
With suitable examples, explain the mechanism used in Y ACC to resolve
parser table conflicts. Why a shift-shift conflict never occurs in LR
Parsers? [81

(5) Write syntax directed definitions to process and translate declarative statements
in a block-structured language that allows nested procedures. The semantic
actions should keep track of scope information and enter the identifiers, their
offsets, types etc. in the symbol table. (Hint: Implement the symbol table -
using stack). ’ : [16]

06) a)

b)

OR
Write an attributed translation grammar (ATG) to parse and translate a
given infix arithmetic expression into a syntax tree. Write LEX and
Y ACC specifications to implement your syntax directed translation

scheme. [10]
Write three code statements for the following source langnagc statemnent.
(Do not write details of translation schemes). [6]

) X=FUN(Q2,Y-1)+7Z, where FUN is a function.
i) A[B]=CI[DI2]] + E * F, where A, C and D are array variables.

[3064]-529 ‘ -2-

[image: image3.png]07) a)

b)
)

08) a)

b)

SECTION - I

What is a procedure parameter? Explain with a suitable example, the
mechanism to set access links when a call is made to a procedure with

procedure parameter. [8]
Compare static, stack and heap allocations. [4]
For the following C program, draw the details of the activation records if
i) Stack allocation is used i) Heap allocation is used
(Show the activation records after ‘main’ calls ‘fun’ and ‘fun’ returns
back to ‘main’ [6]
main() {

int *p;

p = fun();
}
int *fun()
{

inti=23;

return &i;
}

OR

Draw a snapshot of the execution of the following program showing an
activation record with static and dynamic links and other relevant details
when ‘main’ calls ‘gun’ which, in turn, calls ‘fun’ and ‘fun’ again calls

‘gun’.) . [8]
int x =2; ’ '
void fun(int n)

{
static int x = 1;
gun(n);
X~
}
void gun(int m)
inty=m-1;
if (y>0)
{
* fun(y);
X =3
}
}

main() { gun(x); return (0);}
With a suitable example, explain the ‘Display’ mechanism used in Pascal
compiler to handle nested procedure calls and returns. [10]

[3064]-529 _ -3-

[image: image4.png]09 a)
b)

Explain the dynamic programming code-generation algorithm. '[8]
Generate code for the following C program using any code generation

algorithm you know. {8]

main()
{
- ntj;

inta[10];

while (j <= 10)

aljl=0;
}
OR

What is peep-hole optimization? Explain with suitable examples. [6]
With suitable examples, explain various transformations on basic blocks.
(51

What do you meant by ‘Next-Use’ information? How it is computed? (5]

011)Consider the following basic block. Draw the DAG representation of the block
and identify local common sub expressions. Eliminate the common expressions
and rewrite the basic block. Assume that none of the temporary variables (S1,

S2, .., S9) are needed outside the block. The basic block statements are [16]
LIO: S1=4*1 '
S2 = addr(A) - 4
S3 =82 [S1]
S4 = 4*]
S5 = addr(B) — 4
S6 = S5[S4]
S7=S3* 86
S8 = PROD + 87
PROD = S8
S9=1+1
I =89)
If1<=20 GOTOL10
. OR
Q12)Consider the following three address code statements. [16]
) PROD=0 M I=1
i) T2 =addr(A)—4 iv) T4 =addr(B) -4
v) Tl=4*] © vy T3=T2[TI]
vii) ' T5 = T4[T1] vii) T6 =T3 * TS
ix) PROD = PROD + T6 x) I=1+1

xi) IfI<=20 GOTO (v)

Compute basic blocks and draw the flow graph. Eliminate induction variables
and draw the modified flow graph.

0o0a

[3064]-529 -4-

_1237013070

_1237013084

_1237013097

_1237013055

