P1327

[3664]-334

B.E. (Computer)

DESIGN AND ANALYSIS OF ALGORITHMS

(2003 Course)

Sem-1

Time: 3 Hours]

[Max. Marks: 100

Instructions to the candidates:

- 1) Answer three questions from each section.
- 2) Answers to the two sections should be written in separate answer books.
- 3) Figures to the right indicate full marks.
- 4) Assume suitable data, if necessary.

SECTION - I

- Q1) a) Prove there exist two irrational numbers X and Y such that X^y is rational. [8]
 - b) Prove by mathematical induction "All horses are the same color". [8]
 - State whether the function is CORRECT or INCORRECT and justify your answer: $10n^2 + 4n + 2 = O(n^2)$. [2]

OR

- Q2) a) Easter Sunday is in principle the first Sunday after the full moon after the spring equinox. Is this rule sufficiently precise to be called an algorithm? Justify your answer.[6]
 - b) Explain building a heap and maintaining the heap property. [6]
 - c) Recursive permutation generator

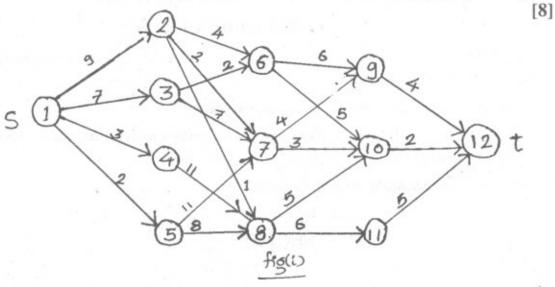
$$A(x_0) = (\dots (a_n x_0 + a_{n-1}) x_0 + \dots a_1) x_0 + a_0$$

Write an algorithm to evaluate a polynomial using Horner's rule. [6]

- Q3) a) Write an algorithm for recursively finding the maximum and minimum of the set of elements $\{a(i), a(i+1)i....a(j)\}$. [8]
 - b) Prove GREEDY-ACTIVITY-SELECTOR always produces solutions of maximum size for the activity-selection problem. [8]

Q4) a) Let n = 5, (p1......p5) = (20, 15, 10, 5, 1) and (d1, d2.....d5) = (2, 2, 2, 3, 3). Find the optional solution with prove it. [8]

b) Find a minimum cost path from s to t in the multistage graph of fig(i).



Q5) a) Define the following:

[8]

- i) Principle of optimality.
- ii) Explicit and implicit constraints.
- iii) Asymptotic notations.
- iv) Amortized analysis.
- b) Consider the following instance of the Knapsack Problem: n = 3, m = 20, (P1, P2, P3) = (25, 24, 15) and (W1, W2, W3) = (18, 15, 10).

OR

- Q6) a) Write an algorithm for finding a minimum cost binary search tree. And show its computing time is $O(n^2)$. [8]
 - b) Prove if $l_1 \le l_2 \le \dots l_n$, then the ordering ij = j, $l \le j \le n$, Minimizes

$$\begin{array}{ccc}
N & k \\
\Sigma & \Sigma & l_{ij} \\
k=1 & j=1
\end{array}$$

Over all possible permutations of ij.

[8]

SECTION - II

Q7) a)	Write an recursive Backtracking algorithm for sum of subsets problem. [8]
b)	Explain Backtracking solution to the 0/1 knapsack problem. [8]
	OR
Q8) a) b)	Explain in detail model for parallel computation. [8] Prove a sorting network with n inputs correctly sorts any set of values on its input if and only if correctly sorts all the 2n input vector consisting only of zeros and ones. [8]
Q9) a) b)	Prove the problem of determining whether a Boolean expression is satisfiable is NP complete. [8] CNF satisfiability is polynomially transformable to the clique problem. Therefore, prove the clique problem is NP-complete. [8]
	OR
<i>Q10</i>)a)	Prove partition α the minimum finish time preemption flow shop schedule (m > 2). [8]
b)	Prove FNS α the optional code generation for level one dags on a one register machine. [8]
011)Wr	ite short notes on : [18]
a)	The 8-Queen problem.
b)	Cook's Theory.
c)	Hamiltonian cycles.
	OR
<i>Q12</i>)a)	Consider the following search algorithm: j = any value between 1 to n
	if(a[j] = x) then
	print "Success"; else print "Fails"
	Is this algorithm non-deterministic? Justify your answer. [6]
b)	Prove, if L1, L2 \subseteq {0, 1}* are languages L1 \leq_p L2, then L2 \in p implies L1 \in P. [8]
c)	Explain in brief NP complete problem. [4]