P948

[3664] - 215

B.E. (Electronics)

EMBEDDED SYSTEMS DESIGN

(2003 Course)

sem (Elective 1)

Time: 3 Hours]

[Max. Marks: 100

Instructions to the candidates:

- 1) Answer any three questions from each section.
- 2) Answer three questions from Section I and three questions from Section II.
- 3) Answers to the two sections should be written in separate books.
- 4) Neat diagrams must be drawn wherever necessary.
- 5) Figures to the right indicate full marks.
- 6) All questions carry equal marks.
- 7) Your answers will be valued as a whole.
- 8) Use of logarithmic tables, slide rule, Mollier charts, electronic pocket calculator and steam tables is allowed.
- 9) Assume suitable data, if necessary.

SECTION - I

- Q1) a) Explain the architecture of a general purpose embedded system. [8]
 - b) What do you mean by design metric? Explain the following design metrics.
 - i) Power.
 - ii) Time to market.
 - iii) Safety.
 - iv) Maintainability.

[10]

OR

Q2) a) Explain the architecture of IEEE 802.11.

[8]

 Explain the protocol architecture of IrDA. Compare short CAN and MODBUS serial communication. [10]

Q3)	a)	Explain the software architecture of an embedded system.	[6]
	b)	Describe the processor selection criteria for an embedded system	for
		any three systems.	10]
		OR	
Q4)	a)	Explain the architecture of N/W processor.	[8]
	b)	What is interrupt latency? Explain the difference between interr	upt
		latency for processor and operating system. Explain different	
		devices.	[8]
Q5)	a)	Explain the following:	[8]
		i) Semaphores for RTOS.	
		ii) Mail-box for RTOS.	
	b)	Discuss the guidelines for code optimization.	[8]
	0)	Disease die gardennes for voue optimization	[o]
		OR	
Q6)	a)	Explain the characteristics of round-robin interrupt architecture.	[8]
	b)	Differentiate ISR task, threads and processes. Define & explain confi	ext
		switching.	[8]
		SECTION - II	
Q7)	a)	Distinguish: pre-emptive and non-pre-emptive scheduling.	[6]
2.7	b)	How data output generated for a IPC in process transfer.	[6]
	c)	Explain Rate Monotonic Analysis (RMA).	[6]
	0)	Explain Nate Monotonie Marysis (MMT).	[o]
		OR	
Q8)	a)	Explain the objects of kernel in operating system.	[8]
	b)	What do you mean by shared data bugs? Explain.	[6]
	c)	Explain 'deadly embracing'.	[4]
09)	a)	Explain the features of real time system development.	[4]
-	b)	Explain in brief RT-Linux module.	[4]
	c)	Explain the application areas of RT-Linux.	[8]

Q10)a)	What is μ C/OS II? Explain the features of μ C/OS II.	[8]
b)	Explain following for μ C/OS II:	[8]
	i) Time-delay functions.	
	ii) Task-related function.	
Q11)a)	Explain in detail basic features of smart card hardware.	[8]
b)	Explain the functioning of RFID system.	[8]
	OR	
012)Ext	plain the embedded system used in digital camera.	[16]

