Total No. of Questions: 12]

P1328

[3664]-350

B.E. (IT)

ADVANCED DATABASE MANAGEMENT

(2003 Course) (414442) Sch 1

Time: 3 Hours]

[Max. Marks: 100

Instructions to the candidat	o ine canaiaaies	÷
------------------------------	------------------	---

- 1) Answers to the two sections should be written in seperate books.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Assume suitable data, if necessary.
- 4) Section I: Q1 or Q2, Q3 or Q4, Q5 or Q6.
- 5) Section II: Q7 or Q8, Q9 or Q10, Q11 or Q12.

SECTION - I

Q1) a) Explain Transaction Server Process Structure.

[6]

- b) What factors result in skew when a relation is partitioned on one of its attributes by Hash Partitioning and Rang Partitioning? In each case, what can be done to reduce the skew?
 [5]
- c) Write a short note on Parallel Hash Join.

[5]

OR

- Q2) a) Describe different approaches to handle cache coherency problem in Parallel Databases.[8]
 - Evaluate how well partitioning techniques support the following types of data access.
 - i) Scanning the entire relation.
 - ii) Locating tuple associatively.
 - iii) Locating all tuples such that the value of given attribute lies within a specified range. [8]
- Q3) a) Define Distributed Databases. Explain types of Distributed Database
 Management System Architectures. [6]
 - State different types of failures in distributed systems and explain failure handling in distributed database using 2Phase Commit protocol. [6]
 - c) Describe how LDAP can be used to provide multiple hierarchical views of data, without replicating the base level data.

Q4) a) Compute semi-join r α s for the relations r and s.

٠		d	r	۹	٠
	м	۲.			ı
	ч	П	ь		ı
	٦		F		ı

R	telation	r
A	В	C
1	2	3
4	5	6
1	2	4
5	3	2
8	9 .	7

The o			
140	9	tion	C
INC	ıa	uou	3

C	D	E	
3 .	4	5 .	
3	6	8	
2	.3	2	
1	4	1	
1	2	3	

- b) Explain the different approaches to detect distributed deadlock which neither site can detect based solely on its local wait-for-graph. [6]
 - c) Explain Optimistic methods for Distributed Concurrency Control. [6]
- Q5) a) Consider the following nested relational schema.

Emp = (ename, childrenset setoff (children), skillset setoff (skills)

Children = (name, birthday), Birthday = (day, month, year)

Skills = (type, Examset setoff (Exams)), Exams = (year, city).

Answer the following:

- i) Write DTD and XML file.
- ii) Write a query in XPath to list all skill types in Emp.
- Find the names of all the employees who have a child who has a birthday in March.
- iv) Find the those employees who took an examination for the skill type "typing" in the city "Pune".
- v) List all skill types in Emp.

[10]

 b) Compare and contrast the two-tier, three-tier and n-tier architecture for Web-DBMS.
 [6]

OR

Q6) a) Write short notes on:

[10]

- i) Axes of XPath.
- ii) SOAP.
- Explain simple type and Complex type of XML Schemas with suitable example.

[3664] - 350

SECTION - II

- Q7) a) Explain different conceptual schemas of Data Warehouse design with suitable example. [10]
 - b) One of the advantages of Data Warehouse is that we can use it to track how the contents of a relation change over time; in contrast, we have only the current snapshot of a relation in a regular DBMS. Discuss how you would maintain history of a relation R; taking into account that 'old' information must somehow be purged to make space for new information.

[6]

OR

Q8) a) Write short notes on:

[10]

i) OLAP

- ii) Meta Data.
- Explain the various options / steps for designing fact table and summary table for Inventory system.
- Q9) a) Write steps of Hunt's Algorithm to construct decision tree. Consider following Data set. [12]
 - Calculate Information gain of Refund, Marital Status and Taxable Income.
 - ii) Calculate Gini Index of Refund, Marital Status and Taxable Income.
 - iii) Calculate Error Rate of Refund, Marital Status and Taxable Income.
 - iv) Draw Decision Tree.

Instance	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No.
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No.	Married	75K	No
10	No	Single	90K	Yes

b) Write a short note on Text Mining.

[6]

OR

Q10)a) Explain Data Preprocessing in Data Mining.

[6]

b) Write K-means algorithm in details and apply this algorithm on the following items to cluster. Assume k = 2.

Object	Attribute 1	Attribute 2	
Medicine A	Thomas between	1	
Medicine B	2	1	
Medicine C	4	3	
Medicine D	5	4	

c) Explain Naïve Bayes Classifier with suitable example.

[6]

- Q11)a) Define Information Retrieval System. Describe how it is differ from database system.[8]
 - b) Write a short note on:
 - i) Web Search Engine.
 - ii) Retrieval Effectiveness.

[8]

OR

- Q12)a) Explain different factors for relevance ranking in information retrieval system. [8]
 - b) Explain different Indexing of Documents approaches. [8]

