[3661]-17

F. E. Examination - 2009

APPLIED SCIENCE - II

(2003 Course)

Time: 3 Hours

IMax. Marks: 100

Instructions:

- (1) Answer any three questions from each section.
- (2) Answers to the two sections should be written in separate answer-books.
- (3) Black figures to the right indicate full marks.
- (4) Use of logarithmic tables, slide rule, mollier charts, electronic pocket calculator and steam tables is allowed.
- (5) Neat diagrams must be drawn wherever necessary.
- (6) Assume suitable data, if necessary.

Constants:

 $h = 6.63 \times 10^{-34} \text{ J-sec.}$ $m_a = 9.1 \times 10^{-31} \text{ kg}.$ $e = 1.6 \times 10^{-19} \text{ C}.$

 $c = 3 \times 10^8$ m/sec.

SECTION - I

- State Heisenberg's Uncertainty Principle. Give one experiment Q.1)(A) to prove its validity. 1061
 - Using Schrodinger's wave equation, find energy and wave (B) function of a particle in a rigid box. Show necessary waveforms. [07]
 - DeBroglie Wavelength of electrons in a monochromatic beam (C) is 7.2×10^{-11} meters. Calculate the momentum and energy of electrons in the beam in electron volts. 1041

OR

Q.2)	(A)	Explain Davisson - Germer Experiment on electron diffraction and discuss the results.	[07]
	(B)	Derive Schrodinger time independent wave equation.	[06]
	(C)	Compute the lowest three permitted energy levels of an electron in an infinite potential well of width 1 A° .	[04]
Q.3)	(A)	State the important properties of lasers. Explain the operation of Solid State Ruby Laser with the help of a neat labelled	
4		diagram.	[07]
	(B)	(1) Explain the process of Holographic Recording.	[03]
	los, or	(2) Explain Meissner effect.	[03]
	(C)	Explain in brief the type I and type II Superconductors.	[04]
		OR	
Q.4)	(A)	Explain:	[06]
		(1) Spontaneous Emission	
		(2) Stimulated Emission	
		(3) Population Inversion	
	(B)	(1) Define magnetic field intensity, susceptibility and permeability and show that $\mu_r = 1 + \chi$.	[04]
		(2) Discuss applications of Ferrites.	[04]
	(C)	State any six applications of Laser.	[03]
Q.5)	(A)	Explain the classification of solids into conductors, insulators and semiconductors on the basis of energy band theory.	[06]
	(B)	Explain with a neat diagram the principle, construction and working of a Bainbridge Mass Spectrograph.	[06]
	(C)	Calculate the conductivity of extrinsic silicon at room temperature if the donor impurity added is 1 in 10^8 silicon atoms.	
	mand o	Given: At room temperature, $n_i = 1.5 \times 10^{10} \text{ per cm}^3$	
		$\mu_e = 1{,}300 \text{ cm}^2/\text{volt} - \text{sec.}$ and number of silicon atoms per unit volume = 5×10^{22} .	[04]
		OP	

Q.6)	(A)	Explain Hall effect. Obtain an expression for the Hall voltage. State applications of Hall effect.	[06]
	(B)	Develop a neat comparison between Optical Microscope and Electron Microscope.	[06]
	(C)	An electron starts at rest at the negative plate of a plane parallel capacitor across which is applied a direct voltage of 1,000 votls.	-
		The distance between the plates is 1 cm. How long will it take the electron to reach the positive plate? Find its velocity at	10.41
		section - II	[04]
Q.7)	(A)	Explain the method for determination of Calorific Value of a Highly Volatile Fuel.	[07]
	(B)	What is Knocking? Explain how it is related with Octane Number and Cetane Number of a Fuel.	[06]
	(C)°	A coal sample requires 20% excess air for complete combustion. Calculate weight of air for 100 kg coal if coal contains,	
		C = 81%, $H = 4%$, $N = 1.5%$, $S = 1.2%$, $O = 3%$.	[04]
		OR	
Q.8)	(A)	What is Proximate Analysis? How it is carried out? Give significance of percentage of the various components in a coal sample in this analysis.	[07]
	(B)	(1) Distinguish between low temperature carbonisation and	[07]
	(D)	high temperature carbonisation.	[03]
		(2) Calculate GCV and NCV of a coal if 1.3 gm of coal is burnt in Bomb calorimeter, raises temperature of 2 litres of water in calorimeter by 4.65°C. Hydrogen percentage	
	(C)	in coal is 2% and water equivalent is 690 gm. What is Rocket Propellent? Give important characteristics of	[03]
	(C)	good propellent.	[04]

Q.9)	(A)	Define Wet Corrosion. Explain Galvanic and Concentration Cell Corrosion with one example each.	[07]
	(B)	What is Secondary Battery? Explain the construction, reactions and applications of Lead Acid Battery.	[06]
	(C)	Distinguish between Anodic Coatings and Cathodic Coatings.	[04]
		OR	
Q.10)	(A)	What is Dry Corrosion? Explain mechanism involved in it by using suitable example.	[07]
	(B)	Describe 'Anodic Protection' of metal for the Corrosion Control.	[06]
	(C)	Describe method of Electroplating of metal.	[04]
Q.11)	(A)	Explain principle, instrumentation and working with the help of diagram for Atomic Absorption Spectroscopy.	[06]
	(B)	State the principle and technique involved in Thin Layer Chromatography.	[06]
	(C)	State the characteristics of Electromagnetic Radiation.	[04]
		OR	
Q.12)	(A)	Explain experimental techniques of Column Chromatography.	[06]
	(B)	Give the principle and applications of Gas Chromatography.	[06]
	(C)	Calculate number of Vibrational Degrees of Freedom for following molecules :	[04]
		(1) NH ₃	
		(2) H ₂ O	
		(3) CO ₂	
		(4) C_6H_6	