[3661]-107

F. E. (Semester - II) Examination - 2009

APPLIED SCIENCE - II

(June 2008 Pattern)

Time: 3 Hours

[Max. Marks: 100

Instructions:

- (1) Answers to the two sections should be written in separate answer books.
- (2) Neat diagrams must be drawn wherever necessary.
- (3) Black figures to the right indicate full marks.
- (4) Use of logarithmic tables, slide rule, Mollier charts, electronic pocket is allowed.
- (5) Assume suitable data, if necessary.

SECTION - I

- What is Power Alcohol? Give methods of preparation, merits O.1) (A) and demerits of Power Alcohol. [06]
 - Write note on Hydrogen Gas as a Fuel. (B) [05]
 - (C) In Boy's gas calorimeter's experiment when 0.1m³ of a fuel gas is burnt during which 25 kg of water is circulated. Temperature of incoming water and outgoing water is 20°C and 33°C respectively. Weight of steam condensed is 250 gm. Calculate gross calorific value and net calorific value, if heat liberated in condensing water vapour and cooling the condensate is 586 kcal/kg.
 - Explain the Kjeldahl's method for the determination of nitrogen (D) from coal sample. Also give significance of analysis. [03]

OR

[03]

Q.2)	(A)	What is Calorific Value of Fuel? Explain Bomb Calorimeter method for determination of a non-volatile solid fuel.	[06]
	(B)	What is ultimate analysis of coal? Give method's for determination of carbon, hydrogen and sulphur from coal. Give significance of it.	[06]
	(C)	Write note on 'Refining of Crude Oil'.	[05]
Q.3)	(A)	Differentiate between Anodic and Cathodic Coating.	[03]
	(B)	What is Electroplating? Explain process of Electroplating, its advantages and applications.	[05]
	(C)	Define Corrosion. Give types of it and explain mechanism of Dry Corrosion.	[05]
	(D)	Write note on 'Pourbaix Diagram'.	[03]
		OR	
Q.4)	(A)	Define Corrosion and explain different factors affecting Corrosion Process.	[06]
	(B)	Write note on Galvanic Protection Method with its applications.	[04]
	(C)	What is Blacodizing? Describe its process, advantages and application.	[06]
Q.5)	(A)	What is Hardness of Water? Give the reasons behind hardness of water and explain the EDTA Method for determination of Hardness of Water.	[05]
	(B)	A zeolite softner was completely exhausted and was regenerated by passing 100 litre of NaCl containing 120 gm/lit of NaCl. How many litres of a sample of water of hardness 500 ppm can be soften by this softner?	[04]
	(C)	Write note on Ion Exchange Method for demineralization of water.	[05]
[03]	(D)	50 ml of a chloride water sample is titrated against 0.01 M AgNO ₃ solution by Mohr's Method. The burette reading is 5.8 ml. Calculate quantity and chloride ions per litre of the water sample.	[03]
		on on	[03]

Q.6)	(A) _	What is Priming and Foaming? What are disadvantages of Priming and Foaming? How can be they prevented?	[06]
	(B)	What is meant by Softening of Water? Explain the Zeolite Method of Water Softening.	[05]
	(C)	50 ml of water sample requires 3.7 ml of $0.025~N~H_2SO_4$ upto phenolphthalein end point and further 4.8 ml upto methyl orange end point during the titration. Calculate the types and amounts of alkalinities in the water sample.	[03]
	(D)	Explain phosphate conditioning for Water Softening.	[03]
		SECTION - II	
Const	tants :	$h = 6.63 \times 10^{-34} \text{ J-sec.}$	
		$e = 1.6 \times 10^{-19}$ coulomb	
		$m_e = 9.1 \times 10^{-31} \text{ kg}$	
Q.7)	(A)	Derive equation of energy and wave function when a free particle is trapped in an infinite potential well.	[07]
	(B)	State Heisenberg's Uncertainty Principle and illustrate it by electron diffraction at a single slit.	[06]
	(C)	Find the Energy of Neutron in units of electron volt whose de-Broglie Wavelength is 1 A°.	
		(Given: Mass of Neutron = 1.674×10^{-27} kg.)	[04]
		OR	
Q.8)	(A)	What is Schrodinger's wave equation? Derive Schrodinger's time independent wave equation.	[07]
	(B)	Explain de-Broglie Hypothesis of matter waves and obtain the equation of de-Broglie Wavelength of Matter Wave in terms of Energy by analogy with radiation. Also obtain equation of de-Broglie wavelength of an electron.	
	(C)	Explain the physical singnificance of Ψ and $ \Psi ^2$.	[04]

Q.9)	(A)	Explain the operation of Ruby Laser with neat labelled diagram.	[06]
	(B)	Explain the following properties of Super-conductors:	[06]
		(a) Meissner Effect	
		(b) Critical Field	
	(C)	Explain any one application of Laser.	[04]
		on the course for 3.4 for the OR	
Q.10)	(A)	Explain the terms:	[06]
		(a) Stimulated Emission	
		(b) Population Inversion	
		(c) Persistent Current	
	(B)	What are the special properties of Laser? Hence explain the working of Semi-conductor Laser.	[06]
	(C)	Explain the BCS Theory of Superconductors.	[04]
		OR	
Q.11)	(A)	Explain Hall Effect in Semi-conductors. Derive the equations of Hall Voltage and Hall Coefficient.	[07]
	(B)	Explain any two properties of Nano-materials.	[06]
	(C)	Calculate the conductivity of Ge specimen if donor impurity is added to the extent of one part in 10^8 Ge atoms at room temperature. (Given: Atomic Weight of Ge = 72.6, Density of Ge: 5.32 gm/cm ³ , Mobility of Electrons = 3800 cm ² /v-sec., Avagadro Number = 6.02×10^{23} atoms/mole)	[04]
		OR	. ,
Q.12)	(A)	Comparing with zero basis explain the working of PN Junction diode in forward bias and reverse bias on the basis of energy	
		level diagram.	[07]
	(B)	 (a) Explain briefly how colloids are synthesized by a chemical route. 	[03]
		(b) Discuss any one application of Nano Technology.	[03]
	(C)	In an N-type semi-conductor the Fermi level lies 0.3 eV below the conduction band at room temperature. If the temperature zis raised to 330 k, find the position of term level.	[04]