[3662]-204

S.E. (Computer Engineering) (I Sem.) EXAMINATION, 2009 DATA STRUCTURES AND ALGORITHMS

(2008 PATTERN)

Time: Three Hours

Maximum Marks: 100

- N.B. :— (i) Answer three questions from Section I and three questions from Section II.
 - (ii) Answers to the two Sections should be written in separate answer-books.
 - (iii) Neat diagrams must be drawn wherever necessary.
 - (iv) Figures to the right indicate full marks.
 - (v) Assume suitable data, if necessary.

SECTION I

- 1. (a) Write the following statements in 'C':

 - (i) print the address of a float variable 'P'.
 - (ii) declare and initialize an array to four characters, a, b, c, d.
 - (iii) declare a pointer to a function 'f' which accepts integer as parameter and does not return anything.
 - (iv) read a string which will contain only alphabets.

[4]

- (b) Write a 'C' program using pointers and functions to :
 - (i) Read a string
 - (ii) Append a string to another string
 - (iii) Copy a string to another string.

without using library functions.

[6]

(c) Write iterative and recursive 'C' functions to find the greatest common divisor of two integers. [6]

Or

2. (a) What is pointer in 'C'? Write the output of the following code:

[6] main()

	(b)	Write a 'C' program to count the number of special characters
		and lines in a text file and append it to same file. [6]
	(c)	Differentiate between the following: [4]
		(i) Call by value and call by reference
		(ii) Structure and union.
		Teet in
3.	(a)	Define the following terms: [4]
		(i) Data structure
		(ii) Pseudocode
		(iii) Abstract data type
		(iv) Big O notation.
	(b)	Write an algorithm to find the sum of integers in an array
		of size 'n' and explain the algorithm components with respect
		to your algorithm. [6]
	(c)	Explain the classification of datastructures with an example
		each. [6]
		terf Jast edl bc/c of ref to
		Or
4.	(a)	Give the basic statement constructs in an algorithm with
		example. [4]
	(b)	Write iterative algorithm to find the factorial of a number.
		Determine the efficiency of your algorithm. [6]
[3662	2]-204	3 P.T.O.

- 5. (a) Write polynomial as ADT. Represent the following polynomials using array: [6]
 - $(i) \quad 5x^8 2x^6 + 2x^4 + 10$
 - (ii) $7x^5 2x^3 7x^2 2$.
 - (b) Write pseudo 'C' algorithm to find the fast transpose of a sparse matrix. Analyse the time complexity of the algorithm. [6]
 - (c) Derive the address calculation formula for multidimensional array, $A[u_0]$ $[u_1]$ $[u_2]$ $[u_n]$ in row major and column major representation. [6]

6.	(a)	Justify array as a linear data structure. Write ADT for	an
		array.	[6]
	(b)	Write pseudo 'C' algorithm to add two polynomials represent	ec
		using array and analyze the time complexity.	[6]
	(c)	Explain the representation of a sparse matrix with an examp	ple
		and state its advantages.	[6]
		SECTION II	
7.	(a)	Give any two applications of sorting and searching.	[4]
	(b)	Write pseudo 'C' algorithm for merge sort and determine	its
		time complexity.	[6]
	(c)	Write pseudo 'C' algorithm to search an element using bina	ary
		search and analyze its time complexity for best and wo	rs
		cases.	[6
		Or	
8.	(a)	Write pseudo 'C' algorithm for insertion sort and determine	ine
		its time complexity.	[6
	(b)	Write the contents of list and each bucket, after each pa	ass
,		using radix sort for the following list of numbers :	
		10, 2, 15, 246, 37, 4, 25, 62, 100, 17.	[6]
	(c)	What is sort efficiency and sort stability ?	[4]

- 9. (a) What do you mean by dynamic memory allocation? How is it done in 'C'? [4]
 - (b) Write 'C' functions for create, insert at end, delete a given node and display list, operations on a singly linked list. [6]
 - (c) Write a 'C' function to concatenate two circular linked lists.

Or

- 10. (a) Represent the following polynomials using circular linked list:
 - $(i) \quad 12x^6 2x^5 3x + 10$
 - (ii) $3x^7 + 5x^2 + 2x$.
 - (b) What is doubly linked list? Explain any two applications of doubly linked list. [6]
 - (c) Write 'C' functions for the following operations by choosing appropriate linked list: [6]
 - (i) to search a given element in list
 - (ii) to traverse the list from any node.
- (a) Define Stack. Write algorithms for operations on a stack represented using array.
 - (b) Write pseudo 'C' algorithm to convert infix expression to postfix expression using linked stack. [6]

(c) Write a 'C' function to reverse a given string using stack. Check a given string is palindrome or not, using this function.

Or

- 12. (a) Define queue. Write linear queue as ADT using linked organization. [6]
 - (b) How the circular queue solves the problem in linear queue ? Give the representation of circular queue using array and linked list. [6]
 - (c) Write short notes on the following: [6]
 - (i) Queue Simulation
 - (ii) Priority queue.