Time: Three Hours

[3662]-262

Maximum Marks: 100

S.E. (Computer Engg.) (I Sem.) EXAMINATION, 2009

ELECTRONICS	DE	VICES	AND	CIRCUITS
(20	003	COUR	SE)	

- Answer Question Nos. 1 or 2, 3 or 4 and 5 or 6 N.B. := (i)from Section I and Question Nos. 7 or 8, 9 or 10 and
 - (ii) Answers to the two Sections should be written in separate answer-books.
 - Neat diagrams must be drawn wherever necessary.
 - (iv) Figures to the right indicate full marks.
 - (v) Assume suitable data, if necessary.

11 or 12 from Section II.

SECTION I

Explain: 1. (a)

[8]

- Thermistor bias compensation (i)
- Diode bias compensation. (ii)
- State three stability factors S, S', S" for biasing circuits and (b) derive equations of S, S' and S" for self bias circuit. [10]

Or

- Compare fixed bias, collector to base bias and self bias circuits 2. (a) with respect to: [8]
 - (i) Circuit diagram
 - (ii) Biasing resistances and its location
 - (iii) Pretence of negative feedback
 - (iv) Equation for stability factors.

- (b) A silicon transistor operated with self bias gives $V_{CEQ} = 5$ V, $I_{CQ} = 2$ mA for $V_{CC} = 10$ V and $R_{C} = 2$ k Ω . If β for transistor is 50, $V_{BE} = 0.7$ V and stability factor S is 5, calculate the values of biasing resistors R_1 , R_2 and R_E . [10]
- 3. (a) Draw the hybrid model for typical common emitter amplifier without $R_{\rm E}$ and derive expression for $A_{\rm i},~R_{\rm i},~A_{\rm v}$ and $R_{\rm o}.$ [10]
 - (b) Write a short note on Bootstrapped emitter follower. [6]

Or

4. (a) A common base amplifier, as shown in Fig. 1 has the following components:

 $R_{\rm S}=600~\Omega,~R_{\rm C}=5.6~{\rm k}\Omega,~R_{\rm E}=5.6~{\rm k}\Omega,~R_{\rm L}=39~{\rm k}\Omega.$ The transistor parameters are $h_{\rm ie}=85$ and $h_{\rm oe}=2~{\rm \mu A/V}.$ Calculate $R'_{\rm i},~R'_{\rm o},~A_{\rm v}$ and $A_{\rm vs}=V_{\rm o}/V_{\rm s}.$

Fig. 1

2

(b) Write a short note on Miller's theorem.

- 5. (a) An ideal class B complementary symmetry push-pull amplifier operates with V_{CC} = 12 V and R_L = 5. If input is sinusoidal, calculate : [10]
 - (i) Maximum power output
 - (ii) Power dissipation in both transistor
 - (iii) Power dissipation in each transistor
 - (iv) Conversion efficiency for maximum power output.
 - (b) Explain various types of coupling in multistage amplifiers. [6]

Or

6. (a) For the circuit shown in Fig. 2, assume both transistors to be identical with $h_{\rm ie}=1.1~{\rm k}\Omega,~h_{\rm fe}=50$ and negligible $h_{\rm re}$ and $h_{\rm oe}$. Calculate R_i, R_o, A_v and A_{vs}. [10]

Fig. 2

(b) Explain harmonic and cross over distortion in large signal amplifiers. [6]

SECTION II

- 7. (a) A p-channel FET has an $I_{DSS} = -12$ mA, $V_P = 5$ V, V_{GS} is 5.32 V. Calculate drain current, transconductance. [8]
 - (b) With the help of neat diagram, explain the operation of n-channel JFET. Show the internal depletion regions and explain their shape. Also draw static o/p characteristic of JFET.
 [10]

Or

- 8. (a) What do you understand by 'pinch off voltages' and 'cut-off voltages' in JFET? Draw and explain transfer characteristics of JFET.
 [8]
 - (b) For the circuit shown in Fig. 3, p-channel JFET has $V_P = 4 \ V$, $I_{DSS} = 4 \ mA$. Calculate : [10]
 - (1) I_{DSQ}
 - (2) V_{GSQ}
 - (3) V_{DSQ} .

Fig. 3

9.	(a)	Draw block schematic of a	n Op-Amp and	briefly explain	function
		of each block.			[8]

(b) What is Schmitt trigger? What are threshold levels and hysteresis? Explain with neat circuit diagram. [8]

Or

- 10. (a) How can Op-Amp be used as an inverting amplifier? Derive an expression for its output and gain. [8]
 - (b) Draw and explain triangular waveform generator using Op-Amp 741. [8]
- (a) Draw and explain two transistor model of SCR. Also explain regenerative action in SCR operation.
 - (b) Draw and explain stepdown (Buck) switching regulator with regulating action. [8]

Or

- 12. (a) Draw and explain online and line interactive UPS. [8]
 - (b) Explain the construction and working of TRIAC. Sketch its
 V-I characteristic. [8]