[3662]-67

S.E. (E/TC/Instru/Comp/IT. etc.) (II Sem.) EXAMINATION, 2009

ENGINEERING MATHEMATICS—III

(2003 COURSE)

Time: Three Hours

Maximum Marks: 100

- N.B. :— (i) From Section I attempt Q. No. 1 or Q. No. 2, Q. No. 3 or Q. No. 4, Q. No. 5 or Q. No. 6.
 From Section II attempt Q. No. 7 or Q. No. 8, Q. No. 9 or Q. No. 10, Q. No. 11 or Q. No. 12.
 - (ii) Answers to the two Sections should be written in separate answer-books.
 - (iii) Neat diagrams must be drawn wherever necessary.
 - (iv) Figures to the right indicate full marks.
 - (v) Use of electronic pocket calculator and steam tables is allowed.
 - (vi) Assume suitable data, if necessary.

SECTION I

1. (a) Attempt any three of the following:

[12]

(i)
$$\frac{d^2y}{dx^2} + \frac{dy}{dx} = \frac{1}{1 + e^x}$$

(ii)
$$\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = x^2 + \sin x$$

(iii)
$$(4x+1)^2 \frac{d^2y}{dx^2} + 2(4x+1) \frac{dy}{dx} + y = 2x+1$$

- (iv) $(D^2 + 1)y = x \sin x$ (By variation of parameters method)
- (v) $(D^3 + 4D)y = \sin 5x \cdot \cos 3x$.
- (b) A capacitor of 10^{-3} farads is in series with an e.m.f. of 20 V and an inductor of 0.4 Henry. At t = 0, the charge q and current i are zero. Find q and i at time t. [4]

Or

2. (a) Attempt any three of the following: [12]

(i)
$$(D^3 + 3D^2 - 4)y = 6e^{-2x} + 4x^4$$

$$(ii) \quad \frac{d^2y}{dx^2} - y = \cos x \cdot \cosh x + 3^x$$

(iii)
$$x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} - y = \log x^2 + x - 1$$

(iv)
$$\frac{dx}{z(x+y)} = \frac{dy}{z(x-y)} = \frac{dz}{x^2 + y^2}$$

(v)
$$(D^2 - 4D + 4)y = e^x \cdot \cos^2 x$$
.

(b) Solve: [4]

$$\frac{du}{dx} + v = \sin x$$

$$\frac{dv}{dx} + u = \cos x$$

given at x = 0, u = 1 and v = 0.

3. (a) Evaluate :

$$\int_{C} \frac{\sin \pi z^2 + 2z}{(z-1)^2 (z-2)} dz$$

where C is the circle |z| = 4, using the Residue theorem. [6]

- (b) Find bilinear transformation which maps the points z = 0, -1, ∞ from the z-plane into the points w = -1, -2 -i, i of w-plane.
- (c) Show that the Bilinear transformation $w = \frac{2z+3}{z-4}$ maps the circle $x^2 + y^2 4x = 0$ into the line 4u + 3 = 0. [4]

Or

- 4. (a) If $w = \phi + i\psi$ represents the complex potential for an electric field and $\psi = x^2 y^2 + \frac{x}{x^2 + y^2}$, determine the function ϕ . Also find w in terms of z.
 - (b) Evaluate:

$$\int_{C} \frac{\sin 2z}{\left(z + \frac{\pi}{3}\right)^4} dz,$$

where C is |z| = 2.

[5]

(c) Show that an analytic function f(z) with constant modulus is constant. [5]

(i)
$$f(k) = \begin{cases} -(-1/4)^k &, k < 0 \\ (-1/5)^k &, k \ge 0 \end{cases}$$

(ii)
$$f(k) = \sin\left(\frac{k\pi}{4} + \alpha\right), k \ge 0, \alpha \text{ constant}$$

(iii)
$$f(k) = k^2 e^{-ak}, k \ge 0.$$

(b) Obtain the Fourier integral representation of: [8]

[6]

[4]

[6]

[8]

$$f(x) = \begin{cases} 1 - x^2 & , & |x| \le 1 \\ 0 & , & |x| > 1 \end{cases}$$

Hence evaluate:

$$\int_{0}^{\infty} \left(\frac{x \cos x - \sin x}{x^3} \right) \cos \frac{x}{2} \, dx$$

(c) Solve the following integral equation:

$$\int_{0}^{\infty} f(u) \sin \lambda u du = \begin{cases} 1 - \lambda &, & 0 \le \lambda \le 1 \\ 2 &, & 1 < \lambda \le 2 \\ 0 &, & \lambda > 2 \end{cases}.$$

Or

6. (a) Find the Fourier cosine transform of:

$$f(x) = e^{-ax^2}, a > 0, x > 0$$

(b) Find the inverse z-transform (any two):

(i)
$$F(z) = \frac{z(z+1)}{(z-1)^2}, |z| > 1$$

[3662]-67

(ii)
$$F(z) = \frac{z^2}{\left(z - \frac{1}{4}\right)\left(z - \frac{1}{5}\right)}, \frac{1}{5} < |z| < \frac{1}{4}$$

- (iii) $F(z) = \frac{z^2}{z^2 + 1}$ (using Inversion Integral Method).
- (c) Solve the difference equation:

$$f(k + 1) - f(k) = 1, f(0) = 0.$$

SECTION II

7. (a) Find Laplace transforms of the following (any two): [8]

(i)
$$f(t) = t^2 e^{-t} \sin^3 t$$

(ii)
$$f(t) = t$$
 $0 < t < 4$
= 5 $t > 4$

$$(iii) \quad \frac{\cos at - \cos bt}{t}.$$

(b) Prove that: [4]

$$\delta(t-a)*\delta(t-b)=\delta(t-a-b).$$

(c) Solve, using Laplace transform method: [5]

$$\frac{d^2y}{dt^2} + 2\frac{dy}{dt} + y = t \ e^{-t} \quad \text{with} \quad y(0) = 1, \ y'(0) = -2.$$

Or

8. (a) Find inverse Laplace transforms of the following (any two): [8]

(i)
$$\frac{1}{(s-2)^4(s+3)}$$

[4]

$$(ii) \quad \frac{2s+5}{s^2+4s+13}$$

$$(iii) \quad \frac{e^{-2s}}{\sqrt{s+5}}.$$

(b) Using Laplace transform technique, prove that: [4]

$$B(m,n) = \frac{\lceil m \rceil n}{\lceil m+n \rceil}.$$

(c) Solve the following, by using Laplace transform: [5]

$$\frac{d^2x}{dt^2} + 9x(t) = 18t$$
 with $x(0) = 0, x(\frac{\pi}{2}) = 0$.

9. (a) Show that tangent at any point on the curve:

$$x = e^{\theta} \cos \theta$$
, $y = e^{\theta} \sin \theta$, $z = e^{\theta}$

makes constant angle with z-axis.

[5]

[5]

(b) Show that:

$$\overline{F} = (6xy + z^3) \ \overline{i} + (3x^2 - z) \ \overline{j} + (3xz^2 - y) \overline{k}$$

is irrotational. Find scalar ϕ such that $\overline{F} = \nabla \Phi$.

(c) Find directional derivative of:

$$\Phi = xv^2 + vz^3 + zx^2$$

at the point (1, 1, 1) along a line equally inclined with coordinate axes. [6]

10. (a) Establish the following:

(i)
$$\nabla \times \left(\frac{\overline{a} \times \overline{r}}{r^3}\right) = \frac{-\overline{a}}{r^3} + \frac{3(\overline{a}.\overline{r})}{r^5}.\overline{r}$$

(ii)
$$\nabla^2 f(r) = \frac{d^2 f}{dr^2} + \frac{2}{r} \frac{df}{dr}.$$

- (b) With usual notations, show that $\overline{F} = (\overline{a}, \overline{r}) \overline{a}$ is irrotational and find corresponding scalar function Φ . [5]
- (c) If the directional derivative of $\Phi = axy + byz + czx$ at (1, 1, 1) has maximum magnitude 4 in a direction parallel to z-axis, find the values of a, b, c. [5]

11. (a) Evaluate :

$$\int_{C} \overline{\mathbf{F}}.\,dr$$

for
$$\overline{F} = 3x^2\overline{i} + (2xz - y)\overline{j} + z\overline{k}$$

along the path $x^2 = 4y$, $3x^3 = 8z$ from x = 0 to x = 2. [5]

(b) Verify Divergence theorem for $\overline{F} = 4xz\overline{i} - y^2\overline{j} + yz\overline{k}$ and S is the surface of the cube bounded by x = 0, x = a, y = 0, y = a and z = 0, z = a. [6]

[6]

(c) Evaluate:

$$\iint\limits_{\mathbf{S}} (\nabla \times \overline{\mathbf{F}}).\hat{n} \ ds$$

where

$$\overline{\mathbf{F}} = (x - y)\overline{i} + (x^2 + yz)\overline{j} - 3xy^2\overline{k}$$

and S is the surface of the cone $z = 4 - \sqrt{x^2 + y^2}$ above x - y plane. [6]

Or

12. (a) Evaluate the surface integral:

$$\iint_{S} (y^{2}z^{2}\overline{i} + z^{2}x^{2}\overline{j} + x^{2}y^{2}\overline{k}).d\overline{s}$$

where S is the surface of the sphere $x^2 + y^2 + z^2 = a^2$ in the positive octant. [6]

(b) Apply Stokes theorem to evaluate:

$$\int_{C} 4y \, dx + 2z \, dy + 6y \, dz$$

where 'C' is the curve of intersection of :

$$x^2 + y^2 + z^2 = 6z$$
 and $z = x + 3$. [6]

(c) Maxwell's equations are given by :

$$\nabla . \overline{E} = 0, \quad \nabla . \overline{H} = 0, \quad \nabla \times \overline{E} = -\frac{\partial \overline{H}}{\partial t}, \quad \nabla \times \overline{H} = \frac{\partial \overline{E}}{\partial t}$$

show that:

$$\overline{E}$$
 and \overline{H} satisfy $\nabla^2 u = \frac{\partial^2 u}{\partial t^2}$. [5]