T.E. (Computer) (2003 Course) (Semester – I) Examination, 2009 DIGITAL SIGNAL PROCESSING | Tin | ne: | 3 Hours Max. Marks: 1 | 00 | |-----|-----|--|----| | | | Instructions: 1) Answers to the two Sections should be written in separate books. 2) Neat diagrams must be drawn wherever necessary. 3) Use of logarithmic tables, slide rule, Mollier charts, electronic pocket calculator and steam tables is allowed. 4) Assume suitable data, if necessary. 5) Attempt Q. 1 or Q. 2, Q. 3 or Q. 4, Q. 5 or Q. 6 from Section I. 6) Q. 7 or Q. 8, Q. 9 or Q. 10, Q. 11 or Q. 12 from Section II. | | | | | 6) Q. 7 or Q. 8, Q.9 or Q. 10, Q. 11 or Q. 12 from Section II. | | | | | b) Solve the difference equation I - NOITOES brain the step response. | | | 1. | a) | Define a DT system. How its properties can be described by means of impulse response $h(n)$? | 6 | | | b) | With example explain the time scaling and time reversal operations performed on a DT signal. | 6 | | | c) | Which operations are performed on DT signals in linear convolution? Obtain the computational complexity of linear convolution. OR | 6 | | 2. | a) | What is aliasing ? Show that all the frequencies $F_k = F_0 + K.F_s$, $K = \pm 1, \pm 2,$ are the aliases of frequency F_0 . | 6 | | | b) | Express the general form of N th order general difference equation. How it could be expressed for FIR and IIR system? | 6 | | | c) | Define: | | | | | 2) Recursive system | | | | | 3) Dynamic system | | | | | 4) Sampling | 6 | - 3. a) Using Z-transform properties obtain ZT of x(n) = (n + 1) u (-n) specify ROC. - b) State and prove the time shifting property of Fourier transform. Apply it for $x(n) = \delta(n-2)$. 8 8 OR 4. a) Obtain inverse ZT using residue method for a causal sequence having $$X(z) = \frac{3z^2 - z}{2.(z-1)^3}$$. 8 b) Obtain the Fourier transform of a DT sequence $x(n) = (a)^n u(n)$, |a| < 1. Explain how to plot the magnitude spectrum. - 8 5. a) Define system function H(z). How it is obtained from the general difference equation? How it describes the properties of DT system? 8 - b) Solve the difference equation using ZT and obtain the step response, - y(n) x(n) + 2y(n-1) = 0. The points of the property of the points y(n) y(n) = 0. 8 OR 6. a) A causal DT system described by means of a pole zero plot has one zero Z1 = 1 and one pole P1 = 0 obtain the difference equation of the system. Obtain frequency response using simple geometric construction. 8 b) Determine the closed form expression of a nth term of Fibonacci sequence by solving difference equation. (diff.equation: y(n) = y(n-1) + y(n-2)) 8 ## SECTION - II 7. a) Compare DIF FFT algorithm with DJT FFT algorithm. Draw basic butterfly structure for both. 8 b) How circular shifting is different than linear time shifting? Compute six point circular convolution of the following sequences: $$x_1(n) = \{1, 1, 1, 1\}$$ $x_2(n) = Sin\left(\frac{3\pi n}{8}\right) 0 < n \le 5$ 10 | 8. | a) | Define twiddle factor. Compute it for $N = 4$. Express DFT and IDFT using twiddle factor. Discuss its properties. | 8 | |-----|----|---|----| | | b) | How linear convolution can be obtain using circular convolution? Obtain 4 point DFT using Goertzel algorithm for $x(n) = \{0.5, 0.5\}$. | 10 | | 9. | a) | Define a DT filter. What are the characteristics of ideal filter? Compare between FIR and IIR filter. | 8 | | | b) | Design IIR filter using BLT method with given specifications $H(s) = \frac{s}{s+1}$, $F_c = 200 \text{ H}_z$, $F_s = 2 \text{k H}_z$. Use frequency prewarping. OR | 8 | | 10. | a) | What do you mean by linear phase response? Show that the FIR filter described as $y(n) = x(n) - x(n-1)$ has linear phase response. | 8 | | | b) | Compare between Hamming and Hanning window. Write down the design steps of FIR filter using window. | 8 | | 11. | a) | State the 4 types of GLPS (generalised linear phase system). Draw the linear phase FIR filter structure for $M = 7$ (order 6). Specify the no. of hardware elements required. | 10 | | | b) | Realize direct form II IIR filter structure for y (n) = $2 x(n) - x(n-1) + 2y(n-1)$.
OR | 6 | | 12. | a) | Describe FIR filter by means of $H(z)$ with example. Explain cascade form of FIR filter structure. | 8 | | | b) | List the different types of internal buses and memory pointer registers present in ADSP 2105 processor. What is MAC 2 | 8 |