[3562]-207

S.E. (Comp. Engg.) (Second Semester) EXAMINATION, 2009

DATA STRUCTURES

(2003 COURSE)

Time: Three Hours

Maximum Marks: 100

- N.B. :- (i) Answer three questions from each Section.
 - (ii) Answers to the two Sections should be written in separate answer books.
 - (iii) Neat diagrams must be drawn wherever necessary.
 - (iv) Figures to the right indicate full marks.
 - (v) Assume suitable data, if necessary.

SECTION I

- (a) Write pseudo 'C' code to perform addition of two polynomials using circular linked list.
 - (b) Write a node structure to represent GLL in 'C'. Give graphical representation of the following:

(c) Write a short note on Garbage collection and compaction. [4]

- 2. (a) Write a pseudo 'C' code to copy one GLL to another. [4]
 - (b) Write a short note on available space list in CLL. [4]
 - (c) Write a node structure to represent sparse matrix in 'C'.

 Give graphical representation of the following using linked organization:

[0	10	. 0	30	0	0
0	0	0	13	0	0
0	0	0	0	24	25
0	0	0	0	0	0
0	. 0	0	0	44	0
0	0	0	0	0	0

- (a) Write pseudo 'C' code to delete a node in a given Binary Search
 Tree.
 - (b) Construct inorder threaded binary tree for the following data : $\mbox{Inorder } -\mbox{ D } -\mbox{ E } +\mbox{ C } \mbox{ B * A } -\mbox{ G * F }$

Postorder — DE – C + B A * GF * -

Write its preorder traversal. Represent stepwise construction. [8]

(c) Write recursive function to find mirror image of a given binary tree. Show the contents of stack stepwise. [4]

Or

- 4. (a) Write a pseudo 'C' code to create a inorder Threaded Binary

 Tree. [8]
 - (b) Write an algorithm to create a binary tree when its inorder and preporder traversal is given. [6]
 - (c) "Is it worthwhile to use threaded binary trees to avoid recursive postorder or preorder traversal." Justify your answer. [4]
- 5. (a) For a given graph below draw adjacency list and show minimum spanning tree using Prim's algorithm. Show step by step result.Start vertex is 1. [8]

- (b) Write a short note on Topological sort.
- (c) Write pseudo 'C' code for non-recursive depth first search traversal in a graph. [4]

[4]

Or

- 6. (a) Write a pseudo 'C' code to find minimum spanning tree using Kruskal's algorithm. [6]
 - (b) Find a topological ordering of given graph. [5]

(c) Prove that maximum number of edges in a complete graph of nodes 'N' is N * (N - 1)/2.

SECTION II

7. (a) Create an AVL tree for the following data:

78, 21, 14, 11, 97, 85, 74, 63, 42, 45, 57, 16, 20, 19, 52. [8]

	(b)	write short notes on :	
		(1) OBST	8
		(2) Extendible Hashing.	10]
		Or	
8.	(a)	Explain linear probing with and without replacement using t	he
		following data:	
		12, 01, 04, 03, 07, 08, 10, 02, 05, 14, 06, 28.	
		Assume buckets from 0 to 9 and each bucket has one slot. Calcula	ate
		average cost/No. of comparison for both.	10]
	(b)	Explain all rotations in AVL tree with example.	[8]
9.	(a)	Construct B+ tree for the following data:	
		30, 31, 23, 32, 22, 28, 24, 29, 15, 26, 27, 34, 39, 36.	[6]
	(b)	Write a function to insert a node in a binary heap. G	ive
		an example.	[6]
	(c)	Write a short note on red-black tree.	[4]
		Or	
10.	(a)	What do you mean by Min-Max Heap ?	[4]
[356	2]-207	5 P.T	.O.

(b) Consider the following D Heap:

[6]

- (1) Insert 18 and repair Heap after insertion.
- (2) Delete min element and repair Heap after deletion.
- (c) What is splay tree? What are its applications? Explain all the rotations in splay tree with pictorial representation. [6]
- 11. (a) Write short notes on: [8]
 - (1) Inverted files
 - (2) Cellular partition.
- (b) Explain how records are logically deleted from a file. [4] [3562]-207

	(c)	Write 'C' implementation of the primitives for sequential f	file
		organization.	[4]
		Or	
12.	(a)	Write short notes on :	12]
		(1) Index sequential file	
		(2) Direct access file	
		(3) Factors affecting file organization.	
	(b)	What are indices? What are different characteristics of the inc	lex
		file organization?	[4]