[3562]-119

S.E. (Mechanical) EXAMINATION, 2009

METALLURGY

(2003 COURSE)

Time: Three Hours

Maximum Marks: 100

- N.B. :— (i) Answer Q. No. 1 or Q. No. 2, Q. No. 3 or Q. No. 4, Q. No. 5 or Q. No. 6 from Section I and Q. No. 7 or Q. No. 8, Q. No. 9 or Q. No. 10, Q. No. 11 or Q. No. 12 from Section II.
 - (ii) Answers to the two Sections should be written in separate answer-books.
 - (iii) Neat diagrams must be drawn wherever necessary.
 - (iv) Figures to the right indicate full marks.
 - (v) Use of logarithmic tables, slide rule, Mollier charts, electronic pocket calculator and steam tables is allowed.
 - (vi) Assume suitable data, if necessary.

SECTION I

- (a) Distinguish between Screw and Edge dislocation. Also explain the effects of point defects on various properties of materials.
 - (b) Is cold working always superior to hot working? Explain. [4]
 - (c) Derive an expression for CRSS of a single crystal. Calculate resolved shear stress of a single crystal if applied tensile stress is 30 kg/mm² and slip plane is oriented at 45° to the tensile axis?

		Or
2.	(a)	What is a slip system ? Why is copper more ductile than
		Iron ?
	(b)	Why strain hardening is more in fine grained material? [3]
	(c)	Explain the following in brief (any three): [9]
		(i) Point defects
		(ii) Recrystallisation
		(iii) Polygonization
		(iv) Dislocation.
3.	(i)	What is Barba's law? What is its significance? Derive the
		relationship between:
		(a) engineering stress and true stress
		(b) engineering strain and true strain. [6]
	(ii)	Which NDT method do you suggest to sort out steel
		bars of same shape and size but with different chemical
		composition? Explain only the principle of that test. [4]
	(iii)	Draw a typical S-N curve for Al and Steel. Explain why these
		curves differ from each other. Define fatigue limit. [6]
	(iv)	Which hardness test do you recommend for High speed steel
		tool Gray iron casting? [2]
		Or
4.	(a)	Explain what is Creep? When it is of great significance?
		Draw a typical creep curve. [6]
	(<i>b</i>)	Differentiate between Charpy and Izod impact test. [5]
[3562]-119		2

(c)	Draw a typical fatigue fracture. Suggest ways to improve fatigue			
	life of a component. [5]			
(d)	Draw typical engineering stress-engineering strain curves for			
	mild steel and copper. [2]			
(a)	Draw Fe-Fe ₃ C equilibrium diagram (not to scale but			
	proportionate). Give all the details on it. (No written explanation			
	is required) Write various reactions of Fe-Fe ₃ C system with			
	all details. [6]			
(b)	Define Ferrite, Pearlite, Cementite and Killed steel. [4]			
(c)	Which steel would you recommend for the following applications ?			
	Justify your choice (any three): [6]			
	(1) Household utensils			
	(2) RCC bars			
	(3) Crankshaft			
	(4) Master gauge			
	(5) Nuts.			
	Or			

6. Answer the following:

[16]

- (a) Distinguish between Killed and Rimmed steel.
- (b) Draw the microstructure of AISI 1080 steel which is cooled to room temperature under equilibrium cooling condition. Find amounts of phases in it.

5.

- (c) Discuss the effects of Tungsten and Chromium on properties of steel.(d) Which steel do you suggest for the following applications?
 - (1) Milling cutter
 - (2) Taps
 - (3) Fan blades
 - (4) Surgical Instruments.

Justify your choice (any two):

SECTION II

- 7. (a) State True/False and justify (any four): [12]
 - (1) Hypereutectoid steels are hardened from above Acm temperature.
 - (2) Hardness increases during tempering.
 - (3) Annealed steel is harder than normalised steel.
 - (4) Heat treatment is not required after carburising.
 - (5) Plain carbon steels cannot be successfully nitrided.
 - (b) What is carbonitriding? Explain in brief stating its advantages over carburising. [6]

Or

- 8. (a) Differentiate between Carburising and Nitriding. [4]
 - (b) What is Tempering? Is it mandatory? With a suitable graph, explain the variations in properties with tempering temperature. [6]
 - (c) What is Hardenability? How is it measured? [4]
 - (d) Distinguish between TTT and CCT diagram. [4]

[3562]-119

Suggest suitable non-ferrous material for the following 9. (a) applications (any four), mention composition also: [8] (1) Coins (2)Piston Turbine blades (3) Costume Jewellery (4)(5)Bell (6)Gun barrel. Compare S.G. iron and Malleable iron with respect to micro-(b) structure, production, composition and one application. OrIn what respect cast iron is different than steel? 10. (a) [3] (5) White cast iron finds limited applications in engineering in industries. Do you agree/disagree ? Justify your choice. [3] (c) Suggest suitable non-ferrous material for the following applications (any five), mention composition also: [10] Imitation Jewellery (1)(2)Piston (3)Cylinder head of diesel engine Bearings to be used in sea water (4) (5)Thermocouple wire (6)Non-sparking tools (7)Aircraft components Measuring tape. (8)

11.	(a)	Explain the following terms:	[6]
		(i) Apparent density	
		(ii) Compressibility	
		(iii) Green spring.	
	(b)	What is sintering? Explain in brief.	[4]
	(c)	With a neat sketch, explain working of total radiation pyrom	eter.
		Mention its working range of temperature.	[6]
		Or	
12.	Wri	te short notes on (any four):	[16]
	(1)	Cemented carbides;	
	(2)	Particle size and its distribution	
	(3)	Types of thermocouple	
	(4)	Optical pyrometer	
	(5)	Atomization	
	(6)	Advantages of Powder Metallurgy.	