Total No. of Questions : 12] | Total No. of Pages : 6

P1318

Time : 3 Hours|

[3864]-404
B.E. (Computer Engineering)

PRINCIPLES OF COMPILER DESIGN

(2003 Course)

[Max. Marks : 100

Instructions to the candidates :

1)
2)
3)
4)

Answers to the two sections should be written in separate books.

Neat diagrams must be drawn wherever necessary.

Figures to the right indicate full marks.

Assume suitable data, if necessary.

SECTION - I

Q1) Write Lex specifications and auxiliary procedures to perform following tasks
by reading the input text file. [16]

a) Count and display number of letters, words, vowels.

b) Copy the contents to an output file by

Q2) a)

*

Writing each sentence from the input file in “title case” with all
vowels converted to uppercase and omitting all words that begin
with letters x, y or z.

Inserting a newline character after reading each full stop (*.”)
character.

Insert a line number at the beginning of each line.

Replace each letter *v’ with the letter *w’ if followed by the letter

[3

a’.
Replace each letter ‘s” with the letter p” if preceded by the letter

£ .3

u’.
OR

In °C’ language, an integer constant can be expressed in decimal, octal
or hexa-decimal number systems. An integer constant could be long or
short. Write regular expressions to identify integer constants expressed
in any of these forms. Construct DFA from these regular expressions.[10]

PTO.

Q3)

b)

Why it is not possible to design a lexical analysis tool that can detect the
strings having equal number of two characters, say a and b. [6]

Construct LALR (1) parsing table for the following grammar. | 18]
D—-L:T

L—L,id|id

T — integer

T — real
T — array of [num DOTDOT num] of T
Show the moves of the parser for the strings.

1)
it)

a, b, ¢ : integer
p, q : array of [10 .. 20] of array of [20 .. 10] of real.
OR

Q4) a) Construct an LL(1) parsing table for the following grammar. Also compute

Q5)

b)

a)

the synchronization entries (that can be used for error recovery) [10]
S — aBDh

B —>cC

C—-bC|le

D — EF

E—>gle

Fof|e

Prove that no left recursive grammar can be LL(1). (4]

Let X be a nullable nonterminal that derives to at least two terminal strings.
Show that in a LL(1) grammar, no production rule can have two
consecutive occurrences of symbol X on the right side of the
production. [4]

Consider the following CFG.
S — for (E; E;; E;) S,

Use marker non terminal(s), write syntax directed translation to translate
the for statement into three address code statements. Describe the data
structure and auxiliary functions needed. _ [10]

[3864]-404 ..

b) For the following source language statement, show the generated three
'1 address code statements using the translation scheme you have designed

in Q. 5 (a) above. ' [6]
for(1=1;1<=20;1t+)
X=y+2z
OR

Q6) a) Consider the following CFG.
S — switch E {caselist}
caselist — caselistcase V: S
caselist — case V: S
caselist — default: S
caselist — caselist default : S

Use marker non terminal(s), write syntax directed translation to translate
the for statement into three address code statements. Describe the data
structure and auxiliary functions needed. [10]

b) For the following source language statement, show the generated three
address code statements using the translation scheme you have designed
in Q. 6 (a) above. : [6]

switch (a + b)
{
case 2: {x =y; break;}

. case 5: {switch x

{
case 0: {a=Db + 1, break;}
case 1: {a=b + 3; break;}
default: {a=2; break;}

}

break;

case 9: {x =y — 1; break;}
default: {a=2; break;}

[3864]-404 3

07) .

08)

Q9)

SECTION - 11

a) Explain with suitable example code fragments, various parameter passing
methods. |8]

b) “C’ compiler uses static, stack and heap allocation methods for storage
management. Explain these mechanisms using a suitable example *C’
program. [8]

OR

a) Explain the ‘Display’ mechanism used by the PASCAL compiler to
provide access to non-local names with nested procedures. Compare
this technique with other techniques. 18]

b) Explain storage management techniques that are used to support variable
length arrays and to handle function calls with variable number of

arguments. [8]
Construct a DAG for the following three-address code. [16]
) t,=a+b
i) t,=c+d
i) t;=e—t,

v) ty=t, -1,

Label the DAG using labeling algorithm and show the generated code. Assume
there are only two registers R, and R, and the machine supports all necessary
Instructions.

OR

Q10) a) Consider the three address code and assumptions about the underlying

machine such as registers and instructions as given in Q. 9 above. Assume
all three address code statements given in Q. 9 above are in one single
basic block. [8]

Using the straightforward code generation algorithm, for each of the
three address code statements, show

1) the location L that describes the entity where required computation
are to be performed.

n) generated instruction(s).

u) contents of the register and address descriptor.

1v) cost in terms of memory words.

What 1s the total size of the code in terms of number of memory words?

[3864]-404 il

b) If three address code statements (11) and (11) as given in Q. 9 above are
swapped, show the generated code as in question 10 (a) above. What 1s
the total size of the code in terms of number of memory words? [8]

Q11) a) ‘Loop Unrolling’ involves replicating the body of the loop to reduce the
required number of tests if number of iterations are constant. Apply the
technique to the loop shown below (i) Once and (i1) twice and explain its
purpose in code optimization. [6]
k =200;
while (k >=0)

{

arr [k] =0;

k=

}

b) ‘Loop Jamming’ is a technique that merges the bodies of two loops if
the two loops have the same number of iterations and they use the same
indices. Apply this technique to following code fragment and explain its
role in optimization. ' [6]
for(I=0;1<10; I++)

for (I=0;1<10; I++)

XL J]=0;
for(I=0;1<10; I++)
X[LJ]=1;
c) Write a note on Peephole Optimization. [6]

OR

Q12) a) ‘Loop Test Replacement’ is a technique that replaces a loop termination
test phrased in terms of one variable, by a test phrased in terms of
another variable. Apply this technique to the following code fragment
and explain its purpose in optimization.

temp = 5;
1=1;
.L10: - x=temp
i=i+1
temp = temp + 5
if (i<=10)
goto L10; | [6]

[3864]-404 ' .

b) ‘Loopreversal’ is a technique that reverses the order in which values are
assigned to the index variable. Apply this technique to the following
code fragment that finds the last occurrence of x in an integer array

val[50]. Illustrate its significance in code optimization. [6]
for (1=0;1<=49; 1++)
{

k=49 —1i;

if (val [k] =x)

break:
b
¢) Explain the following : [6]

1) Reaching definitions.
u) Live vanables.

i) Available expressions.

0000

[3864]-404 i

