P1073

[3864] - 247

B.E. (Electronics)

ADVANCED DIGITAL SIGNAL PROCESSING (2003 Course) (404205)

Time: 3 Hours]

[Max. Marks:100

Instructions to the candidates:

- 1) Answer Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or Q.8, Q.9 or Q.10, Q.11 or Q.12.
- 2) Answers to the two sections should be written in separate books.
- 3) Neat diagrams must be drawn wherever necessary.
- 4) Use of electronic pocket calculator is allowed.
- 5) Figures to the right indicate full marks.
- 6) Assume suitable data, if necessary.

SECTION - I

Q1)	a)	Define the following terms.		[10]
		i)	Random process.	
		ii)	Stationary random process.	
		iii)	Power density spectrum.	
		iv)	Mean ergodic process.	
	b)	Exp	plain the difference between causality and stability.	[4]
	c)	Wh	at do you mean by the term minimum phase system?	[2]
			OR	
Q2)	a)	Exp	plain the following terms:	[6]
		i)	Decimation by a factor D.	
		ii)	Interpolation by a factor U.	
	b)	Exp	plain the polyphase filter structure.	[4]
	c)	Cor	nsider the signal $x(n) = a^n u(n), a < 1$	[6]
		i)	Determine the spectrum X(w).	
		ii)	The signal $x(n)$ is applied to a decimator that reduces the rat	e by a

factor of 2. Determine the O/P spectrum.

- Q3) a) Draw the block diagram of adaptive filters as noise canceller and explain.

 [6]
 - Explain how system modelling can be done with the help of adaptive filters.
 - c) Explain the basic LMS adaptive algorithm. [6]

OR

- Q4) a) Show that the adaptive filter turns itself off when there is no correlation between the interference signal x_R and the contaminated signal y_R . [6]
 - b) Explain adaptive filtering of ocular artifacts from the human EEG. [6]
 - c) Explain adaptive telephone echo cancellation. [4]
- Q5) a) Explain forward linear prediction with the help of block diagram. [8]
 - b) The ARMA process is generated by the difference equation. [10] $x(n) = 1.6 \ x(n-1) 0.63 \ x(n-2) + w(n) + 0.9 \ w(n-1).$
 - Determine the system function of the whitening filter and its poles and zeros.
 - ii) Determine the power density spectrum of $\{x(n)\}$.

OR

- Q6) a) Explain how Wiener filters can be used for filtering and prediction. [8]
 - b) Determine the Lattice Coefficients corresponding to FIR filter with system function. [10]

$$H(z) = A_3(z) = 1 + \frac{13}{24} z^{-1} + \frac{5}{8} z^{-2} + \frac{1}{3} z^{-3}.$$

SECTION - II

- Q7) a) Explain the power spectrum estimation by the periodogram method. [8]
 - b) Explain the use of DFT in power spectrum estimation. [4]
 - c) What is the difference between parametric and non parametric method of power spectrum estimation. [4]

OR

Q0)	a)	[8]				
	b)	Determine the mean and the autocorrelation of the sequence $x(n)$ which is the output of a ARMA $(1, 1)$ process described by the difference				
		equation $x(n) = \frac{1}{2} x(n-1) + w(n) + w(n-1)$.				
		Where w(n) is a white noise process with variance σ_w^2 . [8]				
09)	a)	Explain the basic architecture for signal processing. [6				
	b)	Explain the principle of (VLIW) very long instruction word architecture and explain. [6]				
	c)	Explain the difference between pipelined MAC configuration and nor pipelined MAC configuration. [6]				
		OR				
Q10)	a)	Explain the principles of superscalar architecture and dataflow in SHARC DSP processor. [10]				
	b)	Explain how FIR digital filtering can be carried out on DSP processor. [8]				
011	a)	Define the following: [6]				
-		i) Vowels. ii) Consonants.				
		iii) Formants. iv) Pitch.				
	b)	Draw the diagram of a speech production model and explain how speech is produced. [10]				
		OR				
Q12)	a)	What do you mean by the term speech digitization?				
	b)	What is the need for speech digitization? [3				
	c)	Compare the performance of various speech digitization techniques. [6				
	d)	Explain the following terms with respect to speech				

ii)

MFCC.

Cepstrum