P1319

# [3864]-417

# B.E. (IT)

# ADVANCED DATABASE MANAGEMENT (2003 Course) (414442)

Time: 3 Hours]

[Max. Marks: 100

#### Instructions to the candidates:

- 1) Answers to the two sections should be written in separate books.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Assume suitable data, if necessary.
- 4) Section I: Q. 1 or Q. 2, Q. 3 or Q. 4, Q. 5 or Q. 6.
- 5) Section II: Q. 7 or Q. 8, Q. 9 or Q. 10, Q. 11 or Q. 12.

### **SECTION - I**

Q1) a) Explain Parallel Hash Join with suitable example.

- [6]
- b) Histogram are used for constructing load balanced range partition. [6]
  - i) Suppose a histogram where values are between 1 and 100, and are partitioned into 10 ranges, 1-10, 11-20, ......, 91-100, with frequencies 15, 5, 20, 10, 10, 5, 5, 20, 5 and 5, respectively. Express a load balanced range partitioning function to divide the values into 5 partition.
  - ii) Write an algorithm for computing a balanced range partition with *p* partitions, given a histogram of frequency distributions containing *n* ranges.
- c) Explain a nonuniform memory architecture (NUMA).

[5]

#### OR

Q2) a) Describe interoperation parallelism, left-deep trees versus bushy trees, and query cost estimation.[6]

- Evaluate how well partitioning techniques support the following types of data access.
  - Scanning the entire relation.
  - ii) Locating tuple associatively.
  - Locating all tuples such that the value of given attribute lies within a specified range.
- c) Explain cache-coherency protocol.

[5]

- Q3) a) State different types of failures in distributed systems and explain failure handling in distributed database using 2 Phase Commit Protocol. [5]
  - b) Consider the relations:

[7]

Employee (name, address, salary, plant\_number)

Machine (machine\_number, type, plant\_number)

Assume that the employee relation is fragmented horizontally by plant\_number, and that each fragment is stored locally at its corresponding plant site. Assume that machine relation is stored in its entirely at the Armonk site. Describe a good strategy for processing each of the following queries.

- i) Find all employees at the plant that contains machine number 101.
- ii) Find all machines at the Almaden plant.
- iii) Find employee ∞ machine.
- Explain the technique that the database system you are using provides for dealing with inconsistent states that can be reached with lazy propagation of updates.

OR

# Q4) a) Define semi-join. Compute semi-join $r \alpha s$ for the relations r and s. [5]

| Relation r |   |   | Relation s |      |   |
|------------|---|---|------------|------|---|
| A          | В | C | - C        | D    | E |
| 1          | 2 | 3 | 3          | 4    | 5 |
| 4          | 5 | 6 | 3          | 6    | 8 |
| 1          | 2 | 4 | 2          | 3    | 2 |
| 5          | 3 | 2 | 1          | - 4. | 1 |
| 8          | 9 | 7 | 1          | 2    | 3 |

- b) Consider multiple-granularity locking protocol. In distributed databases, the site containing the root object in the hierarchy can become a bottleneck. Modify the protocol to allow only intension locks on the root and implicitly grant all possible intension locks to every transaction. [7]
  - Explain why this modification works correctly, in that transactions continue to be able to set locks on desired parts of the hierarchy.
  - ii) Explain how it reduce the demand on the root.
- Explain how LDAP can be used to provide multiple hierarchical view of data, without replicating the base-level data.

## Q5) a) Consider following DTD for bibliography.

[12]

<!ELEMENT bib (book\*)>

<!ELEMENT book (title, (author+ | editor+), publisher, price)>

<!ATTLIST book year CDATA #REQUIRED>

<!ELEMENT author (last, first)>

<!ELEMENT editor (last, first, affiliation)>

<!ELEMENT title (#PCDATA)>

<!ELEMENT last (#PCDATA)>

<!ELEMENT first (#PCDATA)>

<!ELEMENT affiliation (#PCDATA)>

<!ELEMENT publisher (#PCDATA)>

<!ELEMENT price (#PCDATA)>

Create XML document, XML Schemas and solve the following queries in XQuery on the bibliography fragment.

- List books published by Addison-Wesley after 1991, including their year and title.
- ii) Find pairs of books that have different titles but the same set of authors (possibly in a different order).
- iii) For each book in the bibliography, list the title and authors, grouped inside a "result" element.

|     | b)   | Describe the various issues for efficient evaluation of XML Queries.                                                                      | [4]          |
|-----|------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------|
|     |      | OR                                                                                                                                        |              |
| Q6) | a)   | xml version = "1.0" encoding = "UTF-8"?                                                                                                   | [8]          |
|     |      | ELEMENT bids (bid_tuple*)                                                                                                                 |              |
|     |      | ELEMENT bid_tuple (userid, itemno, bid, bid_date)                                                                                         |              |
|     |      | ELEMENT userid (#PCDATA)                                                                                                                  |              |
|     |      | ELEMENT itemno (#PCDATA)                                                                                                                  |              |
|     |      | ELEMENT bid (#PCDATA)                                                                                                                     |              |
|     |      | ELEMENT bid_date (#PCDATA)                                                                                                                |              |
|     |      | Create XML document, XML Schemas and solve the following que in XQuery on the bibliography fragment.                                      | ries         |
|     |      | i) List the item number and description of the item(s) that received largest number of bids, and the number of bids it (or they) received |              |
|     |      | ii) List item numbers and average bids for items that have recei<br>three or more bids, in descending order by average bid.               | ved          |
|     | b)   | Explain XML schemas restrictions and facets.                                                                                              | [4]          |
|     | c)   | Write a short note on SOAP.                                                                                                               | [4]          |
|     | -    |                                                                                                                                           |              |
|     |      | SECTION - II                                                                                                                              |              |
| Q7) | a)   | Explain Binning method and Regression method to handle noisy data Data Warehouse.                                                         | (6)          |
|     | b)   | Explain Data Reduction strategies in Data Warehouse.                                                                                      | [6]          |
| 4   | c)   | Write a short note on Materialized view.                                                                                                  | [5]          |
|     |      | OR                                                                                                                                        |              |
| Q8) | a)   | Design conceptual model for Financial Services data warehouse.                                                                            | [6]          |
|     | b)   | List various features of fact data and explain the guidelines to be followhile determining facts from dimensions.                         | wed<br>[6]   |
|     | c) - | Explain how meta data can be used for data transformation and load and query generation in data warehouse.                                | ling,<br>[5] |
|     | 3    |                                                                                                                                           |              |

| Outlook  | Temperature | Humidity | Wind  | Class Attribute |
|----------|-------------|----------|-------|-----------------|
| Sunny    | Hot         | High     | False | N               |
| Sunny    | Hot         | High     | True  | N               |
| Overcast | Hot         | High     | False | P               |
| Rain     | Mild        | High     | False | P               |
| Rain     | Cool        | Normal   | False | P               |
| Rain     | Cool        | Normal   | True  | N               |
| Overcast | Cool        | Normal   | True  | Р               |
| Sunny    | Mild        | High     | False | N               |
| Sunny    | Cool        | Normal   | False | P               |
| Rain     | Mild        | Normal   | False | P P             |
| Sunny    | Mild        | Normal   | True  | P               |
| Overcast | Mild        | High     | True  | P               |
| Overcast | Hot         | Normal   | False | P               |
| Rain     | Mild        | High     | True  | N               |

Write ID3 Classification algorithm. Construct a decision tree based on above training set using ID3.

Explain how to handle candidate item sets using hash tree with suitable example.
[7]

OR

## Q10) a) Consider following data set:

[9]

| Object | Attribute 1 | Attribute 2 | Attribute 3 |
|--------|-------------|-------------|-------------|
| A      | 1           | 1           | 2           |
| В      | 3           | 2           | 4           |
| . C    | 3           | 4           | 6           |
| D      | 4           | 6           | 3           |

Write K-means clustering algorithm. Find the cluster for the objects in data set with K = 2.

# b) Consider following training data set:

[8]

| Age   | Income | Student | Credit_rating | Buys_Computer |
|-------|--------|---------|---------------|---------------|
| <= 30 | high   | No      | Fair          | no            |
| <= 30 | high   | No      | Excellent     | no            |
| 3140  | high   | No      | Fair          | yes           |
| > 40  | medium | No      | Fair          | yes           |
| > 40  | low    | Yes     | Fair          | yes           |
| > 40  | low    | Yes     | Excellent     | no            |
| 3140  | low    | Yes     | Excellent     | yes           |
| <= 30 | medium | No      | Fair          | no            |
| <= 30 | low    | Yes     | Fair          | yes           |
| > 40  | medium | Yes     | Fair          | yes           |
| <= 30 | medium | Yes .   | Excellent     | yes           |
| 3140  | medium | No      | Excellent     | yes           |
| 3140  | high   | Yes     | Fair          | yes           |
| > 40  | medium | No      | Excellent     | no            |

Write Naïve Bayesian Classifier algorithm. Consider Buys\_Computer as a Class Attribute with values yes and no classes. Find the class label for data sample.

X = (age < = 30, Income = medium, Student = yes Credit\_rating = Fair) using Naïve Bayesian Classifier.

- Q11) a) Define Information Retrieval System. Describe how it is differ from database system. [6]
  - b) Write short notes on Signature Files.

[5]-

c) Explain the following terms in Information Retrieval with suitable example.

[5]

- i) Synonyms
- ii) Homonyms
- iii) Proximity
- iv) TF-IDF

Q12) a) Explain any two techniques that support the evaluation of Boolean and Ranked queries.[6]

b) Write short notes on:

[10]

- i) Web Crawler.
- ii) Document Indexing.

0000