[3862]-110

S.E. (Civil) (Second Semester) EXAMINATION, 2010 STRUCTURAL ANALYSIS—I

(2008 COURSE)

Time: Three Hours

Maximum Marks: 100

- Answer Q. No. 1 or Q. No. 2, Q. No. 3 or N.B. := (i)Q. No. 4, Q. No. 5 or Q. No. 6 from Section I and Q. No. 7 or Q. No. 8, Q. No. 9 or Q. No. 10, Q. No. 11 or Q. No. 12 from Section II.
 - Answers to the two Sections should be written in separate (ii) answer-books.
 - Neat diagrams must be drawn wherever necessary. (iii)
 - Figures to the right indicate full marks. (iv)
 - (v) Use of logarithmic tables, slide rule, Mollier charts, electronic pocket calculator and steam tables is allowed.

SECTION I

- 1. Differentiate Static and Kinematic Indeterminacy. [2] (a)
 - Determine the slope at 'C' and A and the deflection at (b) mid-point 'D' of the overhang beam as shown, E = 200 MPa, $I = 1.2 \times 10^8 \text{ mm}^4$. Use Conjugate Beam Method. [8]

(c) Using Castigliano's first theorem, determine deflection of overhang end 'A' of the beam loaded as shown below. [8]

2. (a) Find degree of static and kinematic indeterminacy. [2]

(b) Find slope at 'C' and maximum deflection. Take flexural rigidity = $4 \times 10^4 \text{ kNm}^2$. [8]

- (c) Calculate the central deflection and the slope at ends of simply supported beam carrying udl over whole span using Castigliano's first thm.
- 3. (a) Analyse the continuous beam shown below.

- (b) A horizontal prismatic beam AB of span 'l' m is fixed at its
 - ends A & B. If the right end B of the beam settles down by '8', find the reacting force and reacting moments of each end of beam. Use Castigliano's second thm.
- 4. (a) A continuous beam ABC is simply supported at A, B, C. AB = BC = l. If while loading the beam the support B sinks by δ_1 and support C sinks by δ_2 . Find the moment produced at B and the reactions at the supports due to sinking of supports.

If
$$\delta_1 > \delta_2$$
.

[8]

[8]

(b) Find the reaction at the prop for the loaded propped cantilever shown below:

Use Castigliano's second thm.

[8]

5. (a) Find the vertical and horizontal deflections of joint 'C' of the truss shown below. The area of inclined tie is 2000 mm², while the area of horizontal member is 1600 mm². Take $E = 200 \text{ kN/mm}^2$. [8]

(b) Find forces in members of the frame. C/S area and material of all members is same. [8]

6. (a) Find horizontal deflections of joint 'C' of the pin jointed truss. The area of horizontal members is 150 mm^2 and the areas of members AC and BC are 200 mm^2 each. Take $E = 200 \text{ kN/mm}^2$. [8]

(b) Find the force in wire rope BC if member AB is made of Aluminium and that of member CD and CE are of mild steel.

C/S areas of member CD and CE are 1600 mm² and 2400 mm² respectively. Joint 'C' is loaded by a 50 kN load.

The second moment of area of member AB is 2.5 × 10⁸ mm⁴.

C/S area of wire BC is 800 mm².

SECTION II

7. (a) Write notes on:

[6]

- (i) Elastic-Plastic stress-strain diagram
- (ii) Plastic Hinge.

- (b) Write assumptions in Plastic theory.
- [6]
- (c) A fixed beam of uniform section and length 'l' and fully plastic moment M_P is subjected to a total udl 'w' together with a concentrated load 'P' at a dist. l/3 from left end of beam. Find the value of W which would cause collapse for P = 0.25 W.
- 8. (a) Write notes on:

[9]

- (i) The upper bound theorem
- (ii) The lower bound theorem
- (iii) Uniqueness theorem
- (iv) Mechanism conditions.
- (b) The figure below shows a rectangular portal frame whose legs are fixed at base. The frame carries a point load W at mid-span and a horizontal sway load $\frac{W}{2}$. Find the value of W at which the frame will collapse. All the members are of the same section.

9. (a) For the balanced cantilever beam, draw ILD for reactions at supports A and B, S.F. and B.M. at G and S.F. and B.M. at H.

(b) Draw the influence line diagrams for the forces in members L_1U_2 , U_2L_2 , U_2L_3 and L_1L_2 for the truss shown below. [8]

- 10. (a) A beam ABC 7 m long fixed at 'A' and is simply supported at 'B' and is provided with an internal hinge at 'C', 4 m from A. Draw influence line diagrams for the following:
 - (i) Reaction at A
 - (ii) Reaction at B
 - (iii) Reaction at C
 - (iv) B.M. at D, the middle point of AC.

A D C E

2 m 2 m 2 m B

Hinge

[8]

- and bending moment at support B for the beam shown. There is a hinge provided at 'D'. Find their maximum values when a travelling load of 60 kN per meter may cover any part of span.

 [8]
 - (b) Two wheel loads 200 kN and 80 kN spaced 0.8 m apart roll on the girder shown below. Find the maximum positive and negative bending moments that can occur at the section 'C'.

12. (a) A distributed load of 80 kN/m run may occupy any part of span on the beam. Find maximum positive and negative shear force at section marked 'C'.
[8]

[3862]-110

(b) The wheel load system shown below can move on a girder of span 5 m. Find the maximum positive and negative shear force for the girder.

