

S.E. (Computer Engg.) (Semester – II) Examination, 2010 COMPUTER GRAPHICS (2003 Course)

Time: 3 Hours Max. Marks: 100 Instructions: 1) Answers to the two Sections should be written in separate books. 2) Black figures to the right indicate full marks. 3) Assume suitable data, if necessary. SECTION - I 1. a) Explain Bresenham's line drawing algorithm. Using Bresenham's algorithm draw line from (1, 1) to (5, 3). 8 b) Write short note on (any two): 8 a) Digitizer. b) Touch Panels. c) Joystick. OR 2. a) Explain what is stroke method and bitmap method. 6 b) Using DDA algorithm find out which pixels would be turn on for the line with end points [-1, -2] to [4, 8]. 8 c) Define pixel, vector. 2 3. a) Explain the concept of polygon fill and explain various polygon filling algorithms. 8 b) Explain w.r.t. 2 D transformation: 8 i) Scaling ii) Rotation iii) Translation.

4	a)	What are the different types of polygon? How to find whether given point is inside the polygon or not.	8
	b)	Perform the 45° rotation of triangle A (0, 0), B (1, 1), C (5, 2):	
		i) about the origin	
		ii) about $P(-1, -1)$.	8
5.	a)	What is animation and explain with suitable example how concept of segmentation is used for animation.	8
	b)	With the help of suitable example, explain Cohen-Sutherland outcode algorithm.	10
		OR	
6.	a)	Explain the segment table in detail and suggest the data structure used for segment table.	8
	b)	Describe Sutherland-Hodgeman polygon clipping algorithm with the example.	
		Suggest its limitations.	10
		SECTION – II	
7.	a)	Explain:	
)	i) Parallel projection.	
		ii) Perspective projection. Alam quantid lane has been been	10
	b)	Explain various steps to perform rotation about X-axis, Y-axis and Z-axis in	
		3 D.	8
		OR	
R	a)	Obtain the 3-D transformation matrices for:	
٥.	aj	i) Scaling	
		") T 1:	
		ii) Translation	0
		iii) Rotation about an arbitrary axis.	8
	b)	What is the necessity of 3-D clipping? Explain any one 3-D clipping algorithm.	10

9.	a)	Explain binary space partition algorithm for hidden surfaces.	8
	b)	Explain phong shading and Gourand shading.	8
		OR	
10	a)	Explain Warnock's algorithm for hidden line removal.	8
	b)	Why are hidden surfaces algorithms needed? How does z-buffer algorithm	
		determine which surfaces are hidden.	8
11.	a)	Explain the curve generation methods with example.	8
	b)	What are fractals? Explain how fractal surface is generated.	8
		OR	
12.	a)	What is fractal dimension? Explain koch curve in detail, giving fractal	
		dimension.	8
	b)	Compare Bezier and B-spline curves.	8

B/II/10/715