S.E. (Computer Engg.) (Semester – II) Examination, 2010 DATA STRUCTURES (2003 Course) | Time: 3 H | Iours Max. Marks: 10 | 0 | |-----------|--|----| | Instr | uctions: 1) Answers to the two Sections should be written in separate books. 2) Neat diagrams must be drawn wherever necessary. 3) Use of logarithmic tables, slide rule, Mollier charts, electronic pocket calculator and steam tables is allowed. 4) Assume suitable data, if necessary. 5) Attempt Q. 1 or Q. 2, Q. 3 or Q. 4, Q. 5 or Q. 6 from Section – I and Q. 7 or Q. 8, Q. 9 or Q. 10, Q. 11 or Q. 12 from Section – II. | | | | SECTION – I | | | | ifferentiate singly linked list and doubly linked list. Write a function to insert node after any node in doubly linked list. | 8 | | lin
us | that is generalized linked list? Write a node structure in C for generalized asked list. Give the diagrammatic representation of the following polynomial sing generalized linked list $x^3y^3z^3 + 3x^3y^2z^3 + y^2z^2 + xy^2z^2 + 8x + 9y$. | 8 | | | OR | | | i) | Trite pseudo 'C' algorithm to reverse a singly linked list By using new list Without using new list. | 8 | | | how how to implement stack operations by using linked list. | 8 | | 3. a) D | efine BST. Write a function in C to insert a Node into BST. | 8 | | b) W | Vrite a non-recursive postorder traversal algorithm for Binary tree. | 8 | | | OR xplain how to convert general tree to Binary tree. | 6 | | b) W | That is the use of threaded Binary tree? Give the node structure required for threaded binary tree. Write pseudo algorithm for in order threading of Binary ee. | 10 | | | P.T.C | O. | 5. a) What is minimum spanning tree? Write a Kruskal's algorithm for minimum spanning tree. 8 b) Write pseudo 'C' algorithm for: 10 - i) BFS traversal of graph - ii) DFS traversal of graph OR 6. a) Find a topological ordering for the following graph. 8 b) Define the following terms with respect to graph: 10 - i) Graph traversal so and when a server of inclinages 3' obsess all W (a - ii) Adjacency matrix - iii) Adjacency list - iv) Indegree and outdegree of vertex - v) Diagraph. ## SECTION - II 7. a) What is Hashing? What is the hashing function? Give at least two examples of hashing function. Discuss about the characteristics of a good hashing function. How is collision handled during hashing? 10 b) Explain Rehashing with example. 8 | 8. | a) | Obtain AVL tree starting with an empty tree on the following sequence: | 12 | |-----|----|--|----| | | | STA, ADD, LDA, MOV, JMP, TRIM, XCHG, MVI, DIV, NOP, IN, JNZ. | | | | | Draw the tree at each stage of insertion. At each stage, mention the rotation applied if any. | | | | b) | Compare the AVL tree with Binary search tree. | 6 | | 9. | a) | Define Min-Heap and Max-Heap. Write a algorithm to design a priority queue using heap. | 8 | | | b) | Explain Heapsort algorithm and give its time complexity. | 8 | | | | OR | | | 10. | a) | Explain how to construct a 'B' tree of order 5 with steps for the following data 78, 21, 14, 11, 97, 85, 74, 63, 45, 42, 57, 20, 16, 19, 52, 30, 21. | 8 | | | b) | Define Red-Black tree and give its properties. | 8 | | 11. | a) | Compare sequential file organization with indexed sequential file organization. Write 'C' implementation of primitives for sequential file organization. | 8 | | | b) | State the advantages and disadvantages of the following file organization: | | | | | 1) Sequential | | | | | 2) Indexed-sequential | | | | | 3) Direct. | 8 | | | | OR | | | 12. | W | rite short note on: | 16 | | | a) | Sequential file | | | | b) | Inverted files | | | | c) | Linear probing | | | | d) | Application of hash table. | | | | | | |