[3862]-217

S.E. (Comp.) (Second Semester) EXAMINATION, 2010 DATA STRUCTURES (2008 COURSE)

Time: Three Hours

Maximum Marks: 100

- N.B.:— (i) Answer three questions from Section I and three questions from Section II.
 - (ii) Answers to the two Sections should be written in separate answer-books.
 - (iii) Neat diagrams must be drawn wherever necessary.
 - (iv) Figures to the right indicate full marks.
 - (v) Assume suitable data, if necessary.

SECTION I

- 1. (a) What is binary tree? How is it different than a basic tree? Explain with figures. [5]
 - (b) Convert the following tree to Binary tree step by step: [5]

(c) Write a C/C++ function to print given binary tree in BFS (without using recursion). [8]

S.E. (Comp.) (Second Semagor) EXAMINATION, 2010

- 2. (a) (i) What is binary search tree? Draw binary search tree for the following data: [4] 10, 08, 15, 12, 13, 07, 09, 17, 20, 18, 04, 05.
 - (ii) What is threaded binary tree? What are the advantages of threaded binary tree over normal binary tree?
 Draw an in-order threaded binary tree upto three levels.
 - (b) Write a pseudo 'C' function to print given in-order threaded binary tree. Display the tree in inorder without using extra data structures. [8]
- 3. (a) What is graph? Draw how the following graph can be represented using linked organization: [8]

(b) Write an algorithm to print a given graph in DFS. What is time complexity of your algorithm? [8]

the still RR the Or ages O' obes I seed to

4. (a) What is minimum spanning tree? Find out minimum spanning tree for the given graph step-by-step:

[8]

(b) Write a C/C++ program to find out minimum spanning tree of a given graph using Prim's algorithm. What is time complexity of your algorithm? [8]

5.	(a)	(i) What is height balanced tree? Explain with one
		example. [4]
		(ii) Explain static and dynamic tree tables. [4]
	(b)	Write a Pseudo 'C' algorithm for LL, RR, LR and RL rotations
		for AVL tree. [8]
		Or
6.	(a)	What is collision ? What are different collision
		resolution techniques ? Explain any two methods in
		detail. [8]
	(b)	Create AVL tree for the following given data: [8]
		65, 85, 95, 30, 06, 71, 23, 99, 44, 21.
		SECTION II
7.	(a)	Define Max Heap. Write Pseudo 'C' code for the following operations
		on Max Heap: [10]
		(i) Insertion of element in Max Heap
		(ii) Deletion of an element from Max Heap.
		Mention time complexity of each operation.
		What is the difference between B - tree and B + tree ?
		Construct B + tree of order 3 for the following: [8]
		F, S, Q, K, C, L, H, T, V, W, M, R.

8.	(a)	Create Min Heap (Binary) for
		10, 12, 1, 14, 6, 5, 8, 15, 3, 9, 7, 4, 11, 13.
		After creating Min Heap delete element 8 from Heap and repair
		it. Then insert element 20 and show final result. [10]
	(b)	What is B-tree ? Write a Pseudo 'C' algorithm for deleting
		a node from B-tree. [8]

9. (a) (i) What is file? Explain types of files. [4]

(ii) Explain different modes of opening files. [4]

(b) Write a C/C++ program to create a file. Insert records in the file by opening file in append mode. Display all records and search for a specific record entered by user. [8]

Or

(a) Explain in detail different file organizations. [6](b) Write a C/C++ program to implement direct access file for

employee database and perform insert a record, search a record and display database. [10]

- (a) (i) Differentiate between structures and classes. [4](ii) What is STL ? What are the components of STL ? [4]
 - (b) Write a 'C++' program using STL to perform sorting of given array of integers using bubble sort technique. [8]

12.	(a)	Explain the following terms:	[8]
		(i) Containers	
		(ii) Iterations	
		(iii) Algorithms	
		(iv) Generic programming.	
	(b)	Write a C++ program using STL to reverse the given ar	ray.
		Use container template stack.	[8]
		White a C-C++ program to create a file learn, w	
		int backing a country program to implement these seasons.	
		tyske dre en a fremi mret reg he ssaadgish sev alges.	
		sendatah yaken ber	