

## S.E. (Computer Engineering) (Semester – I) Examination, 2010 DIGITAL ELECTRONICS AND LOGIC DESIGN (2003 Course)

| Time: 3 Hours Ma |    |                                                                                                                                                                                                                                                                                                                | 00 |
|------------------|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|                  |    | Instructions: 1) Answer 1 or 2, 3 or 4, 5 or 6 questions from Section I and 7 or 8, 9 or 10, 11 or 12 questions from Section — II.  2) Answers to the two Sections should be written in separate books.  3) Neat diagrams must be drawn wherever necessary  4) Black figures to the right indicate full marks. |    |
|                  |    | SECTION – I                                                                                                                                                                                                                                                                                                    |    |
| 1.               | a) | Perform the following Hexadecimal substraction and show your answer in hexadecimal only.                                                                                                                                                                                                                       | 8  |
|                  |    | i) $(245)_{Hex} - (199)_{Hex}$                                                                                                                                                                                                                                                                                 |    |
|                  |    | ii) $(A27)_{Hex} - (72 A)_{Hex}$                                                                                                                                                                                                                                                                               |    |
|                  | b) | Explain in detail 4-bit Binary code to Grey code conversion using k-map and MSI circuit.                                                                                                                                                                                                                       | 10 |
|                  |    | OR alignmen                                                                                                                                                                                                                                                                                                    |    |
| 2.               | a) | For a maximum 4-bit decimal number, obtain max. equivalent octal and hex number.                                                                                                                                                                                                                               | 6  |
|                  | b) | Explain the error correcting and detecting codes with suitable examples.                                                                                                                                                                                                                                       | 6  |
|                  | c) | Explain various Boolean algebra rules with suitable example.                                                                                                                                                                                                                                                   | 6  |
| 3.               | a) | Draw and explain 3-input TTL NAND gate circuit, also write various i/p, o/p state table.                                                                                                                                                                                                                       | 10 |
|                  | b) | Explain various characteristics of TTL logic families.                                                                                                                                                                                                                                                         | 6  |
|                  |    | Explain a cecul CPLD and exerting Describe how to prove SO PLD List                                                                                                                                                                                                                                            |    |
| 4.               | a) | Give the classification of logic families and also explain characteristics of digital IC's.                                                                                                                                                                                                                    | 8  |
|                  | b) | Explain NOR Gate using CMOS logic.                                                                                                                                                                                                                                                                             | 8  |



| 5.  | a) | Draw and explain Binary to 7-segment driver IC 7447. Differentiate with IC 7448.                                                                | 8  |
|-----|----|-------------------------------------------------------------------------------------------------------------------------------------------------|----|
|     | b) | What is priority encoder? Design a priority encoder using NAND gate.                                                                            | 8  |
|     |    | OR                                                                                                                                              |    |
| 6.  | a) | Explain the working of BCD adder using IC 7483.                                                                                                 | 8  |
|     | ,  | Design and explain 16:1 mux using 4:1 mux IC.                                                                                                   | 8  |
|     |    | an assurance of blacks on SECTION - III                                                                                                         |    |
| 7.  | a) | Explain the Design of 4-bit synchronous counter using J-K flip flop. Also draw timing diagram.                                                  | 12 |
|     | b) | Explain lock-out condition. Briefly explain its avoidance method.                                                                               | 6  |
|     |    | OR                                                                                                                                              |    |
| 8.  | a) | Explain types of shift registers. Draw and explain working of any two.                                                                          | 8  |
|     | b) | Explain Ring Counter (4-bit) in detail. Differentiate with JOHNSON ring counter.                                                                | 10 |
| 9.  | a) | Explain execution in VHDL.                                                                                                                      | 4  |
|     | b) | Explain design steps of RTL.                                                                                                                    | 4  |
|     | c) | What is ASM chart? Explain the MUX controller method with suitable example.                                                                     | 8  |
|     |    | OR                                                                                                                                              |    |
| 10. | a) | Write entity-architecture declaration for 2-i/p x-NOR and NAND gate. Assume A and B as inputs and C as output of logic gates.                   | 8  |
|     | b) | Draw ASM chart for 4-bit grey code sequence.                                                                                                    | 8  |
| 11. | a) | What is PLD? Explain in brief GAL, PAL and PLA.                                                                                                 | 8  |
|     | b) | Explain in detail PLA design.                                                                                                                   | 8  |
|     |    | Lagitus various characteristics of ITL logic families.                                                                                          |    |
|     |    | explain in detail CPLD architecture. Describe how to program CPLD. List railable tools to design CPLD, and various design steps involved in it. | 16 |