[3862]-222

S.E. (I.T.) (First Semester) EXAMINATION, 2010

FUNDAMENTALS OF DATA STRUCTURE

(2008 COURSE))

Time: Three Hours

Maximum Marks: 100

- N.B.:— (i) Answer to the two Sections should be written in separate answer-books.
 - (ii) Neat diagrams must be drawn wherever necessary.
 - (iii) Figures to the right indicate full marks.
 - (iv) Assume suitable data, if necessary.

SECTION I

- 1. (a) (i) Compare while and do_while loop in C.
- $[3\times2]$
- (ii) Explain enumerated data type with example.
- (b) Select correct choice for the output of the following code segments: [2×3]
 - (i) # define M(x) x * x

main()

{ printf ("%d", M(2 + 3)); }

- (1) 12
- (2) 11
- (3) 25
- (4) error

```
(ii) main()
          int x;
           printf ("%d", x);
```

- (1) -6
- (2) 6
- (3) 4
- (4) None of (1), (2), (3)
- (iii) An expression contains relational operators, assignment operators, and arithmetic operators. In the absence of parantheses; they will be evaluated in which of the following order ?
 - assignment, relational, arithmetic
 - arithmetic, relational, assignment (2)
 - (3) relational, arithmetic, assignment
 - (4) assignment, arithmetic, relational
- (c) Write a C program to find HCF and LCM of two nos.

2. (a) Compare macro and function. [4] Write different bitwise operators in C and explain their use. [6] (b) Write output of the following statements: (c) [8] (i) printf ("%d", 3|0); (ii) printf ("% 0 % x", 10, 20); (iii) printf ("%d", $3 > 2 ? 1 : \theta$); (iv) int x = 10; printf ("%d %d", ++x, x - -); (v) if (-1)printf ("Error"); else printf ("No error"); (vi) printf ("%d", $1 < 2 \&\& 3 \mid \mid \theta$); (vii) printf ("%c", 4["Param"]); (viii) int A[3] [2] = {1, 2, 3, 4, 5, 6}; printf ("%d", *(*(a + 2) + θ)); 3. Describe the following declarations: [6] (i) int *p[5];

[3862]-222

(ii) int **q;

```
(iii) float (*p) (int no);
          (iv) int (*q) [3];
          (v) int * fun1 (int *x);
          (vi) char s[10] [30] [80];
          Differentiate between call by value and call by reference
     (b)
                                                                   [4]
          parameter passing methods.
     (c)
          Write a C function to compare two strings.
                                                                   [4]
     (d)
          Compare malloc and calloc functions in C language.
                                                                   [2]
                                 Or
          Write output of the following C code:
                                                                   [3]
4.
          (i) void fun (int val)
                                         main()
                                           fun(5);
                  if (val == 0)
                     return;
                  else
                          fun(val -1);
                             printf("%d", val);
```

```
(ii) void main (void)
                                                                       [3]
                   int A[4] [3] = { {2, 4, 3},
                                   {6, 8, 5},
                                    {3, 5, 1}
                                   };
                   printf("%d %d %d", *n, n[2] [2], n[3] [2]);
           (iii) void print (void)
                                             main()
                                                                        [2]
                  { static int x = 1;
                                          { print( );
                   printf ("%d", x);
                                                 print( );
                                                 print( );
           Write a C program to accept, display and find topper from a
     (b)
           list of n students, using functions.
                                                                        [8]
           Classify data structures and give one example of each type. [8]
5.
     (a)
          Analyze time complexity of the following code segments: [8]
           (i) for (i = 1; i \le n; i++)
                  for (j = 1; j \le m; j++)
                    for(k = 1; k \le p; k++)
                          x = x + 1;
                                                                    P.T.O.
[3862]-222
```

```
while (i \le n)
          X++;
           i++;
 (iii) int process (int no)
        if (no \le 0)
            return (0);
       else
           return (no + process (no - 1));
                           Or
What do you mean by frequency count of a statement? Explain
 its importance in analysis of algorithm with suitable examples. [6]
 What is space complexity of an algorithm? Explain its importance
 with example.
                                                                [4]
 Write time complexity of the following algorithm using \theta and
 \Omega notations :
                                                                [2]
 void disp (Node * temp)
```

6.

(a)

(b)

(c)

(ii) i = 1

temp = temp → link;

while (temp)

- (d) Explain the following terms with example:
 - (i) Data object
 - (ii) Data type

SECTION II

7. (a) Show output of each pass using bubble sort to arrange the following nos in ascending order. Write pseudo C code for bubble sort:

10, 9, 8, 7, 6, 5, 4, 3, 2, 1

(b) Explain binary search with suitable example. [6]

Or

8. (a) Write output of each pass of merge, sort for the following list:

26, 5, 77, 1, 61, 11, 59, 15, 48, 19

- (b) Write pseudo C code of quick sort and write average and worst case time complexity. [10]
- 9. (a) Represent sparse matrix using suitable data structure. Write pseudo C algorithm to find transpose of a sparse matrix using simple/slow transpose algorithm. Analyze its time complexity. [10]

[4]

	(b)	Explain sequential memory organization with example. [6]
		Or
10.	(a)	Represent sparse matrix using suitable data structure. Write pseudo C algorithm for addition of two sparse matrices. Analyze its time complexity. [12]
	(b)	Compare array and linked list. [4]
11.	(a)	Represent the following lists using generalized linked list: [4]
		(i) ((a, b), c)
		(ii) (a, b, c, (d, e))
	(b)	Write a C function to reverse a singly linked list by changing link pointers. [6]
	(c)	Write a C program to create doubly linked list and print the list forward and reverse using functions. [8] Or
12.	(a)	Write a C function to add two sorted circular linked list of polynomials to form a third sorted list. Write time complexity.
	(b)	Write recursive functions for : [4]
		(i) Display SLL forward
		(ii) Display SLL reverse
	(c)	Compare SLL and DLL. [2]