

T.E. (Mech.) (Semester – I) Examination, 2010 COMPUTER ORIENTED NUMERICAL METHODS (Common with Mech.S/W for Semester – II) (2003 Course)

Time: 3 Hours

Johann and Max. Marks: 100

Instructions: 1) Answer 3 questions from Section I and 3 questions from Section II.

- 2) Answers to the two Sections should be written in separate books.
- 3) Neat diagrams must be drawn wherever necessary.
- 4) Black figures to the **right** indicate **full** marks.
- 5) Assume suitable data, if necessary.

SECTION - I

occasion (value of I) = TINU deflection d = 0.15 num

1. A) Using Simplex method, maximize the following:

$$z = -x_1 + 3x_2 - 2x_3$$
subject to, $3x_1 - x_2 + 3x_3 \le 7$

$$-2x_1 + 4x_2 \le 12$$

$$-4x_1 + 3x_2 + 8x_3 \le 10$$

$$x_1, x_2, x_3 \ge 0$$

12

- B) Define with one example each:
- i) Truncation error
 - ii) Round-off error
- iii) Relative error.

6

OR

2. A) Heat flow rate due to radiation is given by Stefan-Boltzmann's law as follows:

$$q_{rad} = \sigma A \in T^4$$
, where,
 $\sigma = 5.67 \times 10^{-8} \text{ W/m}^2 \text{k}^4$
 $\epsilon = 0.8$

A = Surface area of a rectangular plate with length 'l' m and width 'b' m.

T = Absolute temp. of the plate

Calculate the error caused in calculation of q_{rad} if measurements of l, b and T are made as follows:

$$l = (3 \pm 0.0002) \text{ m}$$

 $b = (2 \pm 0.0001) \text{ m}$
 $T = (800 + 0.01) \text{ k}$

- B) Define and explain:
 - i) Basic variables
 - ii) Slack variables
 - iii) Objective function
- iv) Linear programming model.

2 - TINU Section I and 3 questions

3. A) The deflection of a cantilever beam from its original position at different locations on the beam is as follows:

x (location in 'cm')	0	2	4	6
d (deflection in 'mm')	0	0.1	0.17	0.28

Find out the location (value of x) at which deflection d = 0.15 mm.

8

8

8

8

B) Write a program for fitting a straight line using least square technique, through given points ('n' in no.) as, (x_1y_1) ... (x_n, y_n) .

OR

4. A) Fit a curve of type $PV^n = C$ to the following data

 $V(m^3)$

0.003 0.005 0.015

0.025

P(bar) 10 7

B) Write a flow-chart for Lagrange's interpolation method to find the value of ' y_k ' for given ' x_k ' if 'n' no. of data points, viz $(x_1, y_1)...(x_n, y_n)$ are given.

UNIT - 3

5. A) The distance travelled by a particle at different time instants is given below. Using Newton's forward difference differentiation method, calculate its velocity at t = 7 sec.

t(sec)	0	5	10	15	20
S(m)	0	10	35	70	120

8

B) Explain the LU. Decomposition method to solve 'n' no. of linear simultaneous equations in 'n' unknowns.

(Only step-by-step procedure is expected. No flow-chart/program is expected).

8

6. A) A slender metal rod subject to temperature variation along its length results in the following equations, indicating the temperature distribution.

$$_{4T_1} + 2T_2 = 80$$

$$3T_1 + 4T_2 + 2T_3 = 170$$

$$3T_2 + 4T_3 + 2T_4 = 260$$

$$3T_3 + 4T_4 = 250$$

Calculate the temperatures T₁, T₂, T₃ and T₄ using Gauss-Jordan method.

B) Write a flow-chart for backward difference differentiation procedure if 'n' no of data points are given.

- 7. A) Solve by simple iteration (successive approximation) method with accuracy
 - criterion as 0.01 and initial guess as 0.5. $x = \frac{\cos x}{e^x}$.

8

8

8

B) The velocity of a car measured at different time instants is as follows:

Time (sec)	0	2	4	6	8	10	12
Velocity (m/s)	0	3	6	150	25	40	60

Using Simpson's $\frac{3}{8}$ rule, calculate the distance travelled by the car in 12 seconds. Also draw the flow chart for the same.

B) Draw flowchart for solving hyperbolic partial differential e. AO: 8. A) Calculate $\int_{1+x^2}^4 \frac{dx}{1+x^2}$ using Gauss-Legendre 2 point formula.

8

8

8

B) Solve the following equation using Newton Raphson method with initial guess value as 0.8 and accuracy criterion as 0.01

$$x^3 - x^2 - x + 1 = 0$$

Explain the limitations of Newton-Raphson method with simple sketches.

9. A) $\frac{dy}{dx} = \frac{(1+x^2)y^2}{2}$

X	y
0	1
0.1	1.06
0.2	1.12
0.3	1.21

Evaluate 'y' at x = 0.4 by Milne's predictor-corrector method.

8

B) Draw a flow-chart for finding solution of a differential equation y' = f(x, y)using modified Euler's method.

OR

10. A) Solve the following differential equations simultaneously:

$$\frac{dy}{dx} = 2y + z \qquad \frac{dz}{dx} = y - 3z$$
$$y(0) = 0$$

z(0) = 0.5

Find y (0.1) and z(0.1) using Runge-Kutta method. Take h = 0.1.

8

8

B) Draw a flow-chart for solution of a differential equation using Taylor's series method.

11. A) Solve $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ using explicit (Schmidt method).

At x = 0 and x = 0.5, u = 1 for all values of 't'

At
$$t = 0$$
, $u = 2x + 1$ for $0 < x < 0.5$

Take increment in 'x' as 0.1 and increment in 't' as 0.01.

Find all values of 'u' for t = 0 to t = 0.02.

10

B) Draw flowchart for solving hyperbolic partial differential equation $\frac{\partial^2 f}{\partial \mathbf{v}^2} = \frac{\partial^2 f}{\partial t^2}$. 8

12. A) Solve the following eqn:

$$\frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2} = \frac{\partial^2 \mathbf{u}}{\partial \mathbf{t}^2}$$

At t = 0, $u = \sin 2x$ 0 < x < 0.5

At x = 0 and x = 0.5, u = 1 for all values of 't'.

Find the values of 'u'

at
$$t = 0.03$$
 for $x = 0$ to $x = 0.5$

Take
$$\Delta x = 0.1$$
 and $\Delta t = 0.01$

10

B) Draw flow chart for solⁿ of Laplace eqⁿ, i.e. $\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial v^2} = 0$. 8