P1541

[3764]-411

B.E. (Computer)

DESIGN AND ANALYSIS OF ALGORITHMS

(2003 Course)

Time: 3 Hours]

[Max. Marks: 100

Instructions to candidates:

- 1) Answer THREE questions from each section.
- 2)- Answers to the TWO sections should be written in SEPARATE answer books.
- 3) Figures to the right indicate full marks.
- 4) Assume suitable data, if necessary.

SECTION - I

- Q1) a) Prove by generalized mathematical induction that "every positive integer can be expressed as a product of prime numbers".[8]
 - b) Consider the recurrence:

$$T(n) = O(n)$$

$$T(l) = \theta(l)$$

Show that above recurrence is asymptotically bound by $\theta(n)$. [8]

State whether the following function is e CORRECT or INCORRECT and justify your answer.
 [2]

$$3n + 2 = \mathcal{O}(n)$$

OR

- Q2) a) Prove by contradiction: There exist two irrational numbers X and Y such that X^y is rational.[8]
 - b) Prove by mathematical induction that the sum of the cubes of the first *n* positive integers is equal to the square of the sum of these integers. [8]
 - State whether the following function is e CORRECT or INCORRECT and justify your answer.
 [2]

$$10n^2 + 4n + 2 = O(n^2)$$

Q3) a) Write an algorithm for sorting n numbers using Quick sort method.Determine its time complexity. [8]

- Write Kruskal's algorithm. Comment on its time complexity. [8] With respect to greedy method define the following terms and explain (04) a)
 - Feasible solution. i)

briefly their significance.

- Optimal solution. ii)
- Subset Paradigm. [8]
- Write an algorithm for recursive binary search. What is the time complexity for successful search and unsuccessful search? [8]
- (05) a) Write a function to compute length of shortest paths of a given graph.[6]
 - Write a short note on worst case optimal algorithm. b) [6]
 - Enlist and briefly explain elements of dynamic programming. c) [4]

OR

Q6) a) Prove if $l_1 \le l_2 \le \dots \le l_n$ then the ordering $i_j = j$, $l \le j \le n$ minimizes.

$$\sum_{k=1}^{n} \sum_{j=1}^{k} l_{ij}$$

over all possible permutations of the i_i .

[8]

Two jobs have to be scheduled on three processors. The task times are given by matrix:

$$J = \begin{bmatrix} 2 & 0 \\ 3 & 3 \\ 5 & 2 \end{bmatrix}.$$

Show all possible schedules for the jobs. Prove that there exists an optimal schedule. [8]

SECTION - II

(07) a) Write a Recursive Backtracking algorithm for sum of subsets of a problem. [8]

Explain how branch and bound can be used to solve Knapsack problem? b) [8]

Q8) a)	Explain in detail control abstraction of L.C. search.	[8]
b)	Write recursive back tracking schema for m coloring of the graph.	[8]
Q9) a)	Consider the following expression:	
	((7 - (21/3))*3) + ((9*(10 - 8)) + 6). Explain how it can be evaluate parallely.	ted [8]
b)	Explain in detail parallel sorting.	[8]
	OR	
<i>Q10</i>)a)	Prove that Hamilton cycle is in NP.	[8]
b)	State halting problem and prove that it is undividable. To which category (P or NP) does it belong to?	ory [8]
		101
<i>Q11</i>)a)	What is Satisfiability problem? Explain in detail.	[8]
b)	Write Non deterministic Knapsack algorithm.	[8]
c)	State True or False: Satisfiability problem is NP complete.	[2]
	OR	
<i>Q12</i>)Wri	ite short notes on any three:	18]
a)	Cook's Theorem.	
b)	AND/OR graph problem.	
c)	8 Queen's Problem.	
d)	Hamilton Cycles.	

