Total No. of Questions: 12] [Total No. of Printed Pages: 4

[3761]-14

F. E. Examination - 2010

BASIC ELECTRICAL ENGINEERING

(2003 Course)

Time: 3 Hours

Max. Marks: 100

Instructions:

- (1) Answer three questions from section I and three questions from section II.
- (2) Answers to the two sections should be written in separate books.
- (3) Black figures to the right indicate full marks.
- (4) Neat diagrams must be drawn wherever necessary.
- (5) Use of logarithmic tables, slide rule, Mollier charts, electronic pocket scientific calculator and steam tables is allowed.
- (6) Assume suitable data, if necessary.

SECTION - I

- Define Insulation Resistance and derive its expression for a O.1) (A) Cable. [06]
 - (B) Write a short note on Nickel-Cadmium Cell. [05]
 - A piece of silver has a resistance of 1Ω . What will be the (C) resistance of manganin wire of one-third of the length and onethird the diameter if the resistivity of manganin is 30 times that of silver? [06]

- Q.2) (A) An electric water heater raises the temperature of 20 liters of water from 16°C to 100°C. If the efficiency of the heater is 85%, calculate the energy consumed by the heater in (i) Joules
 - (ii) in kwh. The sp. heat capacity of water is 4190 J/kgK.

	(B)	Define and explain Work, Power and Energy.	[06]
	(C)	Discuss the effect of temperature on the resistance of various	
		materials.	[05]
Q.3)	(A)	State and explain Kirchoff's Laws.	[06]
	(B)	Derive the formulae to convert a delta connected network into)
		its equivalent star connected network.	[06]
	(C)	State and explain Maximum Power Transfer Theorem.	[05]
		OR	
Q.4)	(A)	State Superposition Theorem and use it to calculate the curren in branch X-Y of the circuit shown in fig. 1.	t [12]
		where the last and light will be ready sould be	. ,
		2Ω $3V$	
		$\leq 10^{\circ}$	
		$4.8V$ $+$ $+$ 4Ω $=$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	
		2Ω $3V$ Fig. 1	
	(B)	State and explain Thevenin's Theorem.	[05]
Q.5)	(A)	Define and explain the following as related with Magnetic Circuit	[06]
		(1) Magnetic Flux Density	
		(2) Permeability	
	(B)	Write a short note on Magnetic Leakage and Fringing.	[06]
	(C)	Explain Hysteresis Loss.	[04]
		OR	
Q.6)	(A)	A magnetic core, in the form of a closed ring has mean length of 20 cm and cross section of 1 cm ² . The relative permeability	/
		of iron is 2400. Calculate the current which will be required in a coil of 2,000 turns uniformly wound on the ring to create	
		a flux of 0.2 mwb in the iron.	[06]
	(B)	State and explain Faraday's Laws of Electromagnetic Induction.	[06]
	(C)	Define Self and Mutually Induced e.m.f.	[04]
13761	1-14	2	ontd.

SECTION - II

Q.7)	(A)	Derive expression of Energy stored in Capacitor in terms of Capacitance and Voltage.	[06]
	(B)	Derive the expression for Average Value of the Sinusoidally Varying Current in terms of its Peak Value.	[06]
	(C)	An alternating current is given by i = 14.14 sin 377 t.	
		Find its -	
		(1) R.M.S. Value	
		(2) Frequency and sketch its Waveform.	[05]
		OR OR	
Q.8)		Derive the expression for the RMS Value of the Sinusoidally Varying Current in terms of its Peak Value.	[06]
	(B)	Define and explain: b noutronnout mon due malque (A)	
F9())		(1) Form Factor and	
		(2) Peak Factor	[06]
	(C)	Two capacitors of $8\mu F$ and $2\mu F$ are connected in series across a 400V d.c. supply.	
		Calculate:	
		(1) Resultant Capacitance	
		(2) p.d. across each capacitor	[05]
Q.9)	(A)	A Coil of Resistance 15Ω and inductance 0.05H is connected in series with $100\mu F$ capacitor a cross a 230V, 50Hz supply. Find :	
		(1) Current Drawn	
		(2) Phase Angle	
		(3) Voltage Drop Across Coil and Capacitor	[08]

	(B)	Two impedances $(8 + j6)\Omega$ and $(3 - j4)\Omega$ are connected in parallel across a.c. supply. If the total current drawn is 25 Amp then calculate current and power taken by each)
		impedance.	[08]
		OR	
Q.10)	(A)	Explain following terms:	
		(1) Active Power	
		(2) Reactive Power	
		(3) Admittance Triangle and	
		(4) Impedance Triangle	[08]
	(B)	A 200V, 50 Hz single phase supply is connected to a load consisting of 50Ω resistance, 75 mH inductance of 500μ F capacitance all in series. Calculate the current drawn. What	
		will be new value of current if supply frequency is reduced to 25 Hz.	1001
0.11)	(4)		[08]
Q.11)	(A)	Explain with neat connection diagram how direct load test is performed on single phase transformer to determine its regulation and efficiency.	
	(D)		[08]
	(B)	Define:	
		(1) Phase Sequence	
		(2) Balanced Load Module 1997	722727
		(3) Symmetrical Supply	[06]
	(C)	State the equations for 3 phase active power, reactive power and apparent power.	[03]
Q.12)	(A)	A 3300/250 50Hz Single Phase Transformer has cross sectional	
hene	arraran e	area of core of 125cm2 and 70 turns on low voltage side.	
		Calculate:	
		(1) The value of maximum flux density.	
		(2) The no. of turns on high voltage side.	[05]
	(B)	Derive the expression of Active Power in a Delta connected	
		balanced load in a three phase circuit. Draw connection diagram	
		and relevant phasor diagram.	[12]
0.7.9		[3761]-14/4	