[3762]-608

S.E. (Comp. Engg.) (II Sem.) EXAMINATION, 2010

COMPUTER GRAPHICS

(2003 COURSE)

Time: Three Hours

Maximum Marks: 100

- N.B.: (i) Neat diagrams must be drawn wherever necessary.
 - (ii) Assume suitable data, if necessary.
 - (iii) Answer three questions from Section I and three questions from Section II.
 - (iv) Figures to the right indicate full marks.

SECTION I

- (a) Describe Bresenham's line drawing algorithm. Explain sharp slope and gentle slope situations.
 - (b) Explain the following character generation methods in detail:
 - (i) Bitmap method
 - (ii) Stroke method
 - (iii) Starburst method.

[8]

- (c) Define:
 - (i) Vectors
 - (ii) Pixels.

[4]

P.T.O.

2.	(a)	Explain the features of the following:	
		(i) Scanner	
		(ii) Touch panels	
		(iii) Joysticks.	[6]
	(b)	Using DDA algorithm, find out which pixels would be turn	n on
		for the line with end points as $[-1, -2]$ to $[4, 8]$.	[[
200	(c)	Write a short note on:	
		"Text styles and line style."	[4]
3.	(a)	State the characteristics of scan line polygon filling algorithm	and
		compare it with boundary fill algorithm.	[8]
	(b)	Discuss the merits and demerits of real time scan conver	rsion
		and run length encoding.	[8]
		Or	
4.	(a)	Show that two-dimensional scaling and rotation do not com-	mute
		in general.	[8]
	(b)	What are the different types of polygon ? How to find who	ether
		given point is inside the polygon or not ?	[8]
[3762	2]-608	2	

5.	(a)	Explain Cohen-Sutherland outcode algorithm with the help of
		suitable example. [8]
	(b)	How is segmentation concept used in animation? Explain by taking
		example. [8]
		Or
6.	(a)	Explain segment table structure and the various data structures
		used to implement the segment table. [8]
	(b)	Explain Sutherland-Hodgman algorithm in detail. [8]
		SECTION II
7.	(a)	Explain:
		(i) Perspective projection.
		(ii) Parallel projection. [10]
	(b)	Explain all the possible 3D transformations along with the rotation
		about an arbitrary axis. [8]
		Or
8.	(a)	What is the necessity of 3D clipping algorithm? Explain midpoint
		subdivision algorithm for 3D clipping. [10]
	(b)	A cube is defined by 8 vertices:
		A(0, 0, 0), B(2, 0, 0), C(2, 2, 0), D(0, 2, 0), E(0, 0, 2), F(0, 2, 2)
		G(2, 0, 2), H(2, 2, 2)
		Perform the following transformations on the above cube :
		(i) Translation $(t_x = 2, t_y = 4, t_z = 0)$
		(ii) Scaling $(s_x = 0.5, s_y = 1, s_z = 1)$
		(iii) Reflection about planes. [8
[3762]-608		3 P.T.O

9.	(a)	Explain the necessity of hidden surface algorithms. How does
		back face removal algorithm determine which surface is to be
		removed ? [8]
	(b)	Write short notes on:
		(i) RGB colour model
		(ii) HSV colour model. [8]
		Or
10.	(a)	What is shading? What steps are required to shade an object
		using Gouraud shading algorithm? [8]
	(b)	Write short notes on :
		(i) Ray tracing
		(ii) Transparency. [8]
11.	(a)	Compare Bezier and B-spline curves. [8]
	(b)	What is fractal dimension? Explain Koch curve in detail, giving
		fractal dimension. [8]
		Or
12.	(a)	What is interpolation ? Explain Lagrangian interpolation
		method. [8]
	(b)	Explain how fractal line algorithm can be used for generating
		fractal surface. [8]