[3762]-208

S.E. (Computer Engineering) (II Sem.) EXAMINATION, 2010

COMPUTER GRAPHICS

(2008 COURSE)

Time: Three Hours

Maximum Marks: 100

- N.B.: (i) Answer any three questions from each Section.
 - (ii) Neat diagrams must be drawn wherever necessary.
 - (iii) Figures to the right indicate full marks.
 - (iv) Assume suitable data, if necessary.

SECTION I

Explain with the help of illustration how Bresenham's line drawing algorithm can be used for circle generation.

[8]

Or

Explain DDA line drawing algorithm in detail. Can line segment represented by points P1(5, 8) and P2(9, 5) be drawn using DDA algorithm? Explain. [8]

P.T.O.

(B)	With the help of block diagram explain raster scan
	displays. [8]
	d / Calamas d Or and deligators
	Draw a block diagram of computer graphics workstation and explain
	functioning of scanner or touch screen or digitizer. [8]
2. (A)	Explain with example Cohen-Sutherland out-cod
	algorithm. [8]
	Or .
	Explain scan line algorithm. Compare it with boundary fill algorithm
	for polygon filling. [8]
(B)	(1) Name with example, different types of polygons. [4]
	(2) Give at least two methods to prove that given point is inside
100 Sept. 100	the polygon. [4]
	Or
	Explain with example seed fill and edge fill algorithm. [8]
[3762]-208	2

3. Fig. 1 and 2 show basic 2D blocks. Apply translation and scaling transformations to get the Fig. 3. Draw diagrams of all intermediate steps.

Fig. 1

Fig. 2

Fig. 3

A 3D cube of dimensions (length, breadth and height) 2 units each is placed in a 3D axis system such that one of its vertex A is at the origin i.e., (0, 0, 0) and vertex F in 3D space. A cube is rotated by 45 degrees along the line segment AF in anti-clockwise direction:

- (1) Draw the initial state of the cube.
- (2) Perform necessary transformation (translation, scaling, rotation) steps.
- (3) Draw the final state of the cube.

[18]

SECTION II

4. (A) Explain with illustration how segments are created, renamed and deleted. [10]

Or

Explain with illustration Sutherland-Hodgman algorithm. [10] [3762]-208

(B)	Can line clipping algorithm be used for polygon of	clipping ?
	Justify.	[8]
	Or	
	Discuss various data structures which can be used	in image
w relevan	segmentation.	[8]
5. (A)	그러면 이번에 많이 되었다면서 하는 사람들이 아니라 없었다.	r removal
	of hidden surfaces ?	[8]
	Or	
	Explain Z-buffer algorithm and its applications.	[8]
(B)	Explain Painter's algorithm with the help of diagram	m and its
	applications.	[8]
	Or	
	Write short notes on:	
	(1) Diffused illumination, OR RGB and HSI/H	SV color
	models.	[4]
	(2) Phong shading OR Transparency.	[4]
[3762]-208	8 5	P.T.O.

6. (A) Explain the term control points in curve drawing. How blending function is calculated for cubic polynomial curve? [8]

Or

Write short notes on fractal lines and fractal surfaces. [8]

(B) Write short note on Bazier curve or B-splines. Draw relevant diagrams.

Or

Explain with commands used to generate bouncing ball animation

(AVI) using MAYA or 3D studio. (AVI is AVI formatted output

presentation)

[8]