[3762]-604

S.E. (Comp.) (I Sem.) EXAMINATION, 2010

DATA STRUCTURES AND ALGORITHMS

(2003 COURSE)

Time: Three Hours

Maximum Marks: 100

- Answer three questions from Section I and three questions N.B. :-(i) from Section II.
 - Answers to the two sections should be written in separate (ii)answer-books.
 - Neat diagrams must be drawn wherever necessary. (iii)
 - Figures to the right indicate full marks. (iv)
 - Assume suitable data, if necessary. (v)

SECTION I

- 1. (a) Explain the following terms with an example:
 - (i) Data
 - Data Object (ii)
 - Data Types (iii)
 - Abstract Data Types (ADT). (iv)
 - Explain the program development steps in detail. (b) [8]

[8]

2.	(a)	Write an algorithm, flow chart, pseudocode and 'C' program
		to find the largest number from the array of size 'n'. [8]
	(b) ·	Explain with an example, static and dynamic data structures. [8]
3.	(a)	Explain how arrays are represented in computer memory using
		Row Major representation and obtain a formula to compute
		address of an element in 2-dimension array. [8]
	(b)	Write pseudo 'C' code to multiply two polynomials. [8]
	(c)	What is sparse matrix ? [2]
		Or
4.	(a)	Write pseudo 'C' code to compute fast transpose of a sparse
х.	(4)	matrix. Obtain time complexity of your algorithm. [10]
	(b)	Write pseudo 'C' code for the following:
		(i) addition of two matrices
		(ii) multiplication of two matrices
		(iii) transpose of a given matrix
		(iv) to check whether given matrix is an identity matrix. [8]
5.	(a)	Implement stack as an ADT using array. [8]
	(b)	Write pseudo 'C' code to convert a given infix expression to
		its post fix form. [8]

6.	(a)	Write short note on multi-stack. State any two applications of multi-stack. [6]
	(b)	Write pseudo 'C' code to reverse a given string and to check whether it is a palindrome. [6]
	(c)	Write short note on applications of stack. [4]
		SECTION II
7.	(a)	Implement queue as an ADT using array. [8]
	(b)	Compare linear queue with circular queue. [4]
	(c)	Explain Josephus problem. How it can be solved using queue ? [4] Or
8.	(a)	Implement doubly ended queue as an ADT using array. [8]
	(b)	Explain in detail the drawbacks of linear queue using an array. How these drawbacks can be resolved? [8]
9.	(a)	Write pseudo 'C' code for selection sort. Write down frequency count for each step and compute total frequency count. What is time complexity of your algorithm in worst case ? [8]
	(b)	Write pseudo 'C' code for binary search and obtain time complexing
		of your algorithm. [6]
	(c)	What do you understand by 'sort stability'? Is quick sort stable?

10.	(a)	Analyse buble sort for best and worst cases and obtain its
		time complexity for best and worst case input. [8]
	(b)	Write pseudo 'C' code for sequential sort and obtain its time
		complexity in best and worst cases. [6]
	(c)	Why do we need to sort data? [4]
11.	(a)	Define the following asymptotic notations:
11.	(4)	Define the following asymptotic notations:
		(i) Big 'O'
		(ii) Big ' Ω '
		(iii) Θ notations. [6]
	(b)	Explain 'Divide and Conquer' strategy of algorithm using the
		example of 'Tower of Hanoi'. [6]
	(c)	Explain why frequency count is important in 'Analysis of
		algorithms'. [4]
		Or
12.	(a)	Analyse binary search algorithm for its time and space complexity
	No.	
		(Best and Worst). [6]
	(b)	Write short note on backtracking algorithmic strategy. [6]
	(c)	Compare sequential search with binary search with reference

to time and space complexity.

[4]