[3762]-204

S.E. (Computer Engineering) (First Semester) EXAMINATION, 2010

DATA STRUCTURE AND ALGORITHMS

(Theory)

(2008 COURSE)

Time: Three Hours

Maximum Marks: 100

- N.B. :— (i) Answer three questions from Section I and three questions from Section II.
 - (ii) Answers to the two Sections should be written in separate answer books.
 - (iii) Neat diagrams must be drawn wherever necessary.
 - (iv) Figures to the right indicate full marks.
 - (v) Assume suitable data, if necessary.

SECTION I

- (a) Explain in brief, the different storage classes of variables in a
 'C' function with examples.
 - (b) Write a 'C' program to:
 - (i) Read a matrix 'A' of real numbers of size $m \times n$.
 - (ii) Calculate the mean of the elements of matrix 'A'.

- (iii) Find the matrix 'B' containing deviation from mean of elements of A.
- (iv) Display matrix 'B'

using functions with parameters.

[8]

Or

2. (a) Write the output of the following code:

#include<stdio.h>

#define M 5

void testoper(int);

int main()

{

int i, m=4;

char a[]="abcd123";

for(i=1; i<m; ++i)

 $printf("%d\t%c\t%d\n", i, a[i], *(a + i));$

testoper(M);

return 0;

1

```
void testoper(int x)
     int i = 10;
     printf("%d%d%d", i|x, i&x, i<< x);
                                                                 [8]
     Write a 'C' program to read the 'n' records of books, with
(b)
     each book record containing the fields as book id, title, author
     and publisher. Store the records in a file. Also display the
     number of books written by a given author along with their
     book ids.
                                                                 [8]
     Define the following, with examples:
           Linear data structure
     (i)
           Big O notation
     (ii)
           Space complexity
     (iii)
                                                                 [8]
           Data type.
     (iv)
     Explain the importance of data structure in the design of an
(b)
```

[3762]-204 3 P.T.O.

[4]

algorithm.

		frequency count ?	[4]
		Or	
4.	(a)	Write an algorithm to find the multiplication of tw	νo
		matrices and determine the time and space complexity	of
		your algorithm.	[8]
	(b)	How do you implement the ADT list ?	[4]
	(c)	Explain the characteristics of an algorithm with	an
		example.	[4]
5.	(a)	Write pseudo 'C' algorithm to find the addition of two spar	se
		matrices.	[6]
	(b)	How do you represent a polynomial using an array ? Write	a
		'C' function to read a polynomial containing 'n' terms.	[6]
	(c)	Consider an integer array X[5][5]. Find the address of an eleme	nt
		X[3][2], assuming the base address as 100, in row major and colum	nn
		major representation.	[6]
[376	[2]-204	4	

How do you determine the time complexity of an algorithm using

(c)

6. (a)	Write pseudo 'C' algorithm to merge two sorted arrays of size
	'm' and 'n' in to a third array. [6]
(b)	What is spase matrix? Write pseudo 'C' algorithm to find the
	simple transpose of a sparse matrix. Analyze the time complexity
	of the algorithm. [8]
(c)	Derive the address calculation formula for a two-dimensional array
	'X' in column major representation. [4]
	SECTION II
7. (a)	What is the need of searching and sorting? [4]
(b)	Write pseudo 'C' algorithm for quick sort and determine the time
	complexity. [6]
(c)	Write the contents of the list and increment after each pass using
	shell sort for the following list of numbers: [6]
	15 21 92 33 44 86 63 55
	Or
8. (a)	Explain in brief the index sequential search. [4]
(b)	Differentiate between internal and external sorting. [4]
[3762]-20	5 P.T.O.

	(c)	Write pseudo 'C' algorithm for searching a given student name	,
		in an array of student names using binary search. Find the space	4
		and time complexity of your algorithm. [8]	
).	(a)	Explain the representation of a polynomial using linked list with	ı
, 1		an example. [4]	
	(b)	How the linked organization is different from sequential	l
		organization ? Explain different types of linked lists. [6]	
	(c)	Write 'C' functions to,	
		(i) Create a Doubly Linked List (DLL).	
		(ii) Add an element at the middle of the DLL. [6]	
		Or	
10.	(a)	Give the applications of linked lists. [4]	I
	(b)	Write 'C' functions to perform the following operations on a singly	7
		linked list:	
		(i) Reverse the list	
	i i	(ii) Delete a given element from the list. [6]]
	(c)	Write 'C' functions to insert and delete the last element in a	1
		circular linked list. [6]]
3769	21-204	6	

11.	(a)	What are the applications of a stack?	[-]
	(b)	Write pseudo 'C' algorithm to check the valid parenthesis in a	n
		arithmetic expression using stack.	3]
	(c)	How do you represent a multiple stack? Give the algorithm	ıs
		for operations on a multiple stack.	3]
		Or	
12.	(a)	Convert the following expression into postfix expression and sho	W
		the contents of stack :	4]
		a - b * c + d / e	
	(b)	Write short notes on:	
		(i) Josephus problem.	330
		(ii) Simulation of recursion.	6]
	(c)	What is a double ended queue ? Write the algorithms for inse	rt

and display operations on it using linked list.

[8]