S.E. (Comp.) (II Sem.) EXAMINATION, 2010 DATA STRUCTURES

(2003 COURSE)

Time: Three Hours

Maximum Marks: 100

- Answer three questions from Section I and three questions N.B. := (i)from Section II.
 - Answers to the two Sections should be written in separate answer-books.
 - Neat diagrams must be drawn wherever necessary. (iii)
 - Figures to the right indicate full marks. (iv)
 - (v) Assume suitable data, if necessary.

SECTION I

- Write pseudo 'C' code to implement stack as an ADT using [6] Singly Linked List.
 - Define a node structure to represent the list using GLL. Represent (b) the following list using GLL

List
$$A = ((a, b), ((c, d), e)).$$
 [6]

Write pseudo 'C' code to invert a given Singly Linked List. [6] (c) P.T.O.

- 2. (a) Write pseudo 'C' code to implement queue as an ADT using circular linked list. [6]
 - (b) Write pseudo 'C' code to perform the following operations on Doubly Linked List:
 - (i) insertion of a node
 - (ii) deletion of a node
 - (iii) to find the length of the list
 - (iv) to concatenate two given lists.

[12] .

- 3. (a) Draw the internal memory representation of the following binary tree using :
 - (i) Sequential representation
 - (ii) Linked representation and
 - (iii) Inorder threaded linked representation.

[3762]-607

(b) Compare the representation of binary tree using sequential and linked organization. [6]

Or

- 4. (a) Write non-recursive pseudo code in 'C' for inorder traversal of binary tree. What is time and space complexity of your algorithm.
 [8]
 - (b) Write pseudo 'C' code to determine equivalence of two binary trees. What is time and space complexity of your algorithm? [8]
- 5. (a) Write an algorithm for topological sorting. Obtain time complexity of your algorithm. [6]
 - (b) Write an algorithm for Breadth First Search of an undirected graph. Obtain the time complexity of your algorithm. [6]
 - (c) Define spanning tree. Explain in brief any two applications of spanning tree. [4]

Or

6. (a) Write an algorithm for Depth First Search of an undirected graph and obtain time complexity of your algorithm. [6]

- (b) Write an algorithm to find Minimum Spanning Tree for a given graph 'C' and obtain its time complexity. [6]
- (c) Define Minimum Spanning Tree. Explain in brief any two applications of MST. [4]

SECTION II

7. (a) Write pseudo 'C' code to construct a binary tree with minimum weighted external path length. Construct a binary tree with minimum weighted external path length for the following weights:

14, 3, 10, 4, 8, 6.

Find the total weighted external path length of the tree constructed by you. [10]

- (b) Explain the following terms with an example:
 - (i) Hash function
 - (ii) Identifier density
 - (iii) Loading density.

[6]

Or

8. (a) What is collision? Explain any two methods of collision resolution. [8]

[3762]-607

(b) .	Write short notes on the following:
	(i) Static Tree Tables
	(ii) Dynamic Tree Tables. [8]
(a)	Write pseudo 'C' code for Heapsort and obtain time complexity
	of your algorithm. [10]
(b)	Write short notes on the following:
	(i) B-tree
	(ii) Trie Indexing. [8]
	Or
(a)	Write pseudo 'C' code to construct a heap for the given set
	of keys. Obtain time complexity of your algorithm. [10]
(b)	Write short notes on the following:
	(i) Red-black trees
	(ii) K-d trees. [8]
(a)	Compare sequential file organization with direct access file
	organization. Write 'C' implementation of primitives for direct
	access file. [8]
01 607	5 РТО
	(a) (b)

		(i) Index sequential file	
		(ii) Hashed indexes.	[8]
		Or	
12.	(a)	Compare linked organization with inverted file organization	by
		means of an example of your choice.	[8]
	(b)	Write short notes on the following:	
		(i) External storage devices	
		(ii) File organization techniques.	[8]

(b) Write short notes on the following: