[3762]-207

S.E. (Computer) (II Sem.) EXAMINATION, 2010 DATA STRUCTURES

(2008 COURSE)

m.		ALI	TT
11me	:	Three	Hours

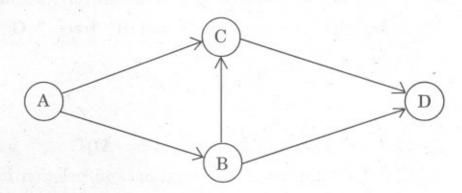
Maximum Marks: 100

- N.B. :- (i) Answer any three questions from each Section.
 - (ii) Answers to the two Sections should be written in separate answer-books.
 - (iii) Neat diagrams must be drawn wherever necessary.
 - (iv) Figures to the right indicate full marks.
 - (v) Your answers will be valued as a whole.
 - (vi) Assume suitable data, if necessary.

SECTION I

- (a) Write an algorithm for post-order recursive traversal of a binary tree, also write a 'C++' function for the same.
 - (b) Explain the concept of:
 - (i) Full Binary Tree
 - (ii) Skewed Binary Tree.

[4]


- (c) (i) What is the use of a Threaded binary tree?
 - (ii) Write an algorithm for the in-order Traversal of a Threaded Binary tree.
 - (iii) State any two applications of trees.

[8]

P.T.O.

2.	(a)	(i) Write a 'C++' recursive function for counting of nodes in
		a tree.
		(ii) Write a 'C++' recursive function for finding height of a
		tree. [6]
	(b)	Explain the concept of representation of a binary tree using
		an array. [4]
	(c)	Explain the difference between a tree and a binary search
		tree.
		Write an algorithm for conversion of binary tree to binary
		search tree. [8]
3.	(a)	Define the following:
		(i) A complete graph
		(ii) A weighted graph. [4]
	(b)	Considering the complete graph with n-vertices, show that the
		number of spanning trees are at least $2^{n-1} - 1$. [6]
	(c)	What is a minimal spanning tree ? How is it different from
		the shortest path sequence of a given graph? Justify your
		answer with an example. [6]
		Or
4.	(a)	Explain the following with example:
		(i) Adjacency list of a graph
		(ii) Strongly connected components. [4]

- (b) Write a pseudo 'C' code to find minimum spanning tree using Kruskal's algorithm. [6]
- (c) Write all the algorithmic steps of topological sorting. Consider the following graph and apply topological sorting: [6]

Graph

- 5. (a) What is a Hashing function? Explain any 4 types of Hashing functions. [6]
 - (b) Create an AVL tree for the following data: 30, 31, 32, 23, 22, 28, 24, 29, 26, 27, 34, 36. [6]
 - (c) What is an optimal binary search tree? What is its use?

Or

- 6. (a) Give any 3 points of comparison between Binary search tree, OBST, Huffman's tree and AVL tree. [6]
 - (b) Obtain the height balance tree for the following sequence of data:

December, January, April, March, July, August, October, November, May, June. Show all steps. [6]

(c) Write a non-recursive function for insertion of an element in AVL tree. [4]

[3762]-207 3 P.T.O.

SECTION II

7.	(a)	Explain the concept of Max heap and Min heap. [4]
	(b)	What is a B- tree ? Write an algorithm to delete a node
		from B- tree. [8]
	(c)	What is a B+ tree? Give the structure of its internal node.
		What are the variations of B and B+ trees? Give any two
		variations. [6]
		Or
8.	(a)	Explain the concept of heap as an ADT. [4]
	(b)	Write a 'C++' functions for insertion and deletion in a priority
	,,,,	queue, represented using a heap. [8]
	(c)	Explain B- trees and B+ trees for indexing of the data. [6]
9.	(a)	Give any three points of comparison between Text files and
	(0)	Binary files. [6]
	(b)	What are indices? What are different characteristics of the
	(0)	index file organization ? [4]
	(c)	(i) What is a sequential file?
	(0)	
		(ii) Give any two advantages of sequential files over unordered
		files.
		(iii) Explain any three operatisons on sequential files in brief. [6]
		Or
10.	(a)	What are the differenes between sequential and index sequential
		files ?
	(b)	Explain the concepts of:
		(i) Primary indexes
		(ii) Clustering indexes
		(iii) Secondary · indexes. [6]

	(c)	Write brief notes on :
		(i) Linked organization of a file
		(ii) Inverted file organization. [6]
11.	(a)	Explain the concept of a stack being implemented using :
		(i) A Dynamic array
		(ii) A linked list. [6]
	(b)	Give the implementation of a Queue using singly linked
		list (SLL) with respect to:
		(i) Insertion of an element
		(ii) Deletion of an element. [6]
	(c)	What are container adaptor classes ? State the three container
		adaptor classes of standard template library (STL). Or
12.	(a)	Explain the typical standard template library (STL) container
		interfaces (any three). [6]
	(b)	Write short notes on :
		(i) Sorting algorithms
		(ii) Mutating sequence algorithms
		(iii) Non-mutating sequence algorithms. [6]
	(c)	What is Abstract Data Type (ADT) ? Give stack as ADT.[4]

and a per more designed to

aras Poursin ipial Estat and the season of manager

to the state of the control of the c

contrates adopter desert ? "said for we want

[17] Annual desemble of the proof of the pro

man of the distributed branch branch being their

endring the second

and the south over the parameter of