[3762]-603

S.E. (Computer Engineering) (First Sem.) EXAMINATION, 2010 DIGITAL ELECTRONICS AND LOGIC DESIGN (2003 COURSE)

Time: Three Hours

Maximum Marks: 100

- N.B.: (i) Answers to the two Sections should be written in separate answer-books.
 - In Section I attempt Question Nos. 1 or 2, 3 or 4, 5 or 6 and in Section II attempt Question Nos. 7 or 8, 9 or 10, 11 or 12.
 - Neat diagrams must be drawn wherever necessary.
 - Figures to the right indicate full marks. (iv)
 - (v) Assume suitable data, if necessary.

SECTION I

- Explain error detection and error correction. 1. [6]
 - Express the -45 and -116 decimal numbers in:
 - (i) Sign Magnitude form
 - One's Complement and
 - (iii) Two's Complement form.

Assume 8 bit word length.

[6]

- Perform $(-17)_{10}$ $(+27)_{10}$ using the 2's complement (c) method. [2]
- Differentiate between Binary Code and Gray Code. (d)[4] P.T.O.

2. (a)	List the procedure to detect and correct error in the received	
	Hamming Code. If A seven bit even parity Hamming Code	
	is Received as 1100110, what is the correct code? [6]	
(b)	List the following Boolean Laws:	
	(i) Commutative Laws	
	(ii) Distributive Laws	
	(iii) Associative Laws	,
	(iv) Inverse Law. [6]	
(c)	Perform the following using binary arithmetic:	
	(i) Multiply $(16)_{10}$ by $(9)_{10}$	
	(ii) Divide $(45)_{10}$ by $(7)_{10}$. [2]	
(<i>d</i>)	Explain De Morgan's Theorem using truth table and	
	example. [4]	
3. (a)	Differentiate between TTL and CMOS w.r.t. :	-
	(i) Fan in	
	(ii) Fan out	
	(iii) Power dissipation per gate	
	(iv) Propagation delay	
	(v) Figure of merit	
	(vi) Power supply voltage. [6]	

		emitter transistor in it. [6]
	(c)	Define the following parameters and give the typical value	S
		of these parameters w.r.t. CMOS logic family:	
		(i) Sourcing Current	
		(ii) Sinking Current. [4	[-]
		Or	
1.	(a)	What is the drawback of WIRED_OR TTL Gate? Exlain, how	N
		it can be removed usnig TRI_STATE Gate. [6	3]
	(b)	Define noise margin and figure of merit w.r.t. TTL. Give their	r
		significance.	6]
	(c)	Comment on Power dissipation and propagation delay of H	I,
		L, S and LS 7400 series.	1]
5.	(a)	Write short notes on:	
		(i) IC 74138	
		(ii) IC 74151. [8	3]
	(b)	Explain BCD adder using IC 7483.	3]
		Or	
6.	(a)	Design 16: 1 MUX using 2: 1 MUX only. Draw truth table	е
		and explain design procedure.	3]
[376	[2]-603	3 P.T.C).

Explain TTL NAND gate with totem pole output. Explain multi-

(b)

(b) Realize the following logic function in SOP form using Quine-Mc Cluskey method and find all prime implicants: $F(P,Q,R,S) = \Pi . M(0,2,3,7,5,9,10,14,13) . d(1,4,8). \qquad [10]$

SECTION II

- 7. (a) Design MOD-11 asynchronous counter. Draw timing diagram. [8]
 - (b) Design a Sequence Detector 101 using Moore state m/c. Use D flip-flops.
 - (i) Draw the state diagram.
 - (ii) Write the state table.
 - (iii) Write Excitation Table for DFF.
 - (iv) Write circuit Excitation Table.
 - (v) K-maps and simplifications.
 - (vi) Draw Logic Circuit diagram.

[10]

Or

- 8. (a) Explain race around condition. How can it be avoided? [4]
 - (b) Give the names of the following IC's:
 - (i) IC 7473
 - (ii) IC 7476
 - (iii) IC 7490
 - (iv) IC 74373.

[4]

(6	Design a Sequence Generator 1100010 using JKFFs.
	(i) Draw the state diagram.
	(ii) Write the state table.
	(iii) Write Excitation Table for JKFF.
	(iv) Write circuit Excitation Table.
	(v) K-maps and simplifications.
	(vi) Draw Logic Circuit diagram. [10]
9.	What is RTL ? Explain the following RTL Notations and
	Implementation:
	(i) Transfer of contents of one Register to the other.
	(ii) A conditional transfer.
	(iii) Two or more operations at the same time. [8]
191 (1	Draw the ASM chart for a 3 binary DOWN COUNTER having
	one enable line E such that:
	E = 1 (counting enabled), E = 0 (counting disabled).
101	Also draw state diagram. [4]
(6	Differentiate between concurrent and sequential statement
	w.r.t. VHDL.
	Or
10. (Explain Structural and Behavioural modeling of VHDL. [4]
[3762]-6	503 P.T.O.

	(b)	Explain, in detail, ASM technique of designing the sequent	tial
		circuit using MUX controlled method. How does it differ fr	om
		conventional flow chart ?	[8]
	(c)	Explain process statement using syntax and one example.	[4]
		akari edigazzi incek ediw	
11.	(a)	Implement the following functions using PLA:	
		$A(P, Q, R) = \Sigma m(0, 1, 6, 7)$	
		B(P, Q, R) = $\Sigma m(1, 2, 4, 6)$	
		$C(P, Q, R) = \Sigma m(2, 6).$	[8]
	(b)	Write a short note on Xilinx XC 4000 FPGA family.	[4]
	(c)	Explain difference between PLA and PAL.	[4]
		- Harriera Ticholdabado A.	
		Or_{CO} and Or_{CO}	
12.	(a)	Draw and explain block diagram of CPLD.	[6]
	(b)	How can we expand the PLA capacity for :	
		(i) Number of outputs	
		(ii) Number of product terms.	[6]
	(c)	Draw and explain Configurable PAL.	[4]