S.E. (Comp.) (First Semester) EXAMINATION, 2010 DIGITAL ELECTRONICS AND LOGIC DESIGN

(2008 COURSE)

Time: Three Hours

Maximum Marks: 100

- N.B. :—(i) Answer Q. No. 1 or 2, Q. No. 3 or 4, Q. No. 5 or 6 from Section I and answer Q No. 7 or 8, Q. No. 9 or 10, Q. No. 11 or 12 from Section II.
 - (ii) Answers to the two Sections should be written in separate answer-books.
 - (iii) Neat diagrams must be drawn wherever necessary.
 - (iv) Figures to the right indicate full marks.
 - (v) Assume suitable data if necessary.

SECTION I

- 1. (a) Convert the following octal numbers into its equivalent decimal and hex. : [6]
 - (i) (555)_{octal}
 - (ii) (777)_{octal}.
 - (b) Solve the following equations using corresponding minimization techniques, also draw MSI design for the minimized output equation:
 - (i) Z = f (A, B, C, D) = π (2, 7, 8, 10, 11, 13, 15)
 - (ii) Z = f (A, B, C, D) = Σ (0, 3, 4, 9, 10, 12, 14).[12]

- 2. (a) Express the following numbers in binary, show the step-by-step equations and calculations ?
 - (i) $(110.110)_{\text{Decimal}}$
 - (ii) (234 . 234)_{Decimal} [6]
 - (b) Convert 4-bit grey code into corresponding BCD code. Show truth table and MSI circuit. [6]
 - (c) Perform the following hex-decimal substruction and show the answer in hex-decimal only: [6]
 - (i) $(ABC)_{Hex}$ $(CBA)_{Hex}$
 - (ii) $(759)_{Hex} (957)_{Hex}$.
- 3. (a) With the help of Quine-McClusky technique determine the PI,

 EPI for the following equation: [10]

 $Z = f (A, B, C, D) = \sum (0, 3, 8, 9, 10, 12, 15)$

(b) Explain standard TTL characteristics in brief. [6]

Or

- (a) Draw z-i/p standard TTL NAND gate with totem pole. Explain operation of transistor (ON/OFF) with suitable input conditions and truth table. [10]
- (b) What is logic family? Explain types of logic families in detail. [6] [3762]-203

5.	(a)	Draw and explain 4-bit BCD adder using IC 7483. Explain any
		two BCD addition operations. [10]
	(b)	Explain the working of cascaded mode magnitude comparator
		using IC 7485 ? [6]
		Or
6.	(a)	Explain decoder (1:8) as a full adder and full subtractor Show
		your design. [8]
	(b)	Design 14:1 mux using 4:1 mux (with enable inputs). Explain
		the truth table of your circuit in short. [8]
		SECTION II
7.	(a)	Design SR flip-flop using JK flip-flop. [4]
	(b)	Explain with a neat diagram working of parallel in serial out
		4-bit shift register. Draw necessary timing diagram. [6]
	(c)	Give any four applications of shift registers. Also explain
		4-bit Johnson's counter. [8]
		Or
8.	(a)	Explain with a neat diagram working of 3-bit up-down synchronous
		counter. Draw necessary timing diagram. [10]
	(b)	Design a sequence generator with a sequence 1101011. [8]

9.	(a)	With the help of an ASM chart design a modulo 6 up-down
		counter. [10]
	(b)	Write VHDL code for 4-bit full adder. [6]
		Or
10.	(a)	Describe architectural blocks of FPCaA. Briefly explain function
		of each. [10]
	(b)	Write VHDL code for 4: 1 MUX. [6]
11.	(a)	Design using PLD a 3 : 8 decoder. [8]
	(b)	Draw a generalised block diagram of a microprocessor. Briefly
		explain function of each block. [8]
		Or
12.	(a)	Using PLDs design a 4-bit Gray code counter. [8]
	(b)	Explain, what is a bus ? Give different types of bus used by
		a microprocessor. [4]
	(c)	Explain the function of:
		(1) ALU
		(2) Program counter
		(3) Instruction register. [4]