[3762]-601

S.E. (Comp.) (I Sem.) EXAMINATION, 2010 DISCRETE STRUCTURE (2003 COURSE)

Time: Three Hours

Maximum Marks: 100

- N.B. :- (i) Attempt Q. No. 1 or Q. No. 2, Q. No. 3 or Q. No. 4, Q. No. 5 or Q. No. 6 from Section I and Q. No. 7 or Q. No. 8, Q. No. 9 or Q. No. 10, Q. No. 11 or Q. No. 12 from Section II.
 - Answers to the two Sections should be written in separate answer-books.
 - Neat diagrams must be drawn wherever necessary. (iii)
 - Figures to the right indicate full marks. (iv)
 - Assume suitable data, if necessary.

SECTION I

A survey has been taken on methods of computer travel. Each respondent was asked to check bus, train or automobile as a major method of travelling to work. More than one answer was permitted. The result reported were as follows :

> Bus-30 people, train-35 people, automobile-100 people, bus and train-15 people, bus and automobile-15 people, train and automobile-20 people and all three methods-5 people. How many people completed a survey form ? [6]

		(i) p \land $(p \rightarrow q)$	
		$(ii) \sim (p \lor q) \leftrightarrow (p \land q)$	
		(iii) $(p \rightarrow q) \land (q \rightarrow p).$	[6]
	(c)	Using Venn diagrams, show that:	
		(i) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	
		(ii) $A \cap (B \oplus C) = (A \cap B) \oplus (A \cap C)$.	[6]
		Or	
2.	(a)	Using Mathematical induction, prove that:	[6]
		$1^2 - 2^2 + 3^2 - 4^2 + \dots (-1)^{n-1} n^2 = (-1)^{n-1} \cdot \frac{n(n+1)^{n-1}}{2}$	1)
	(b)	Translate the following into logical notations:	
		(i) For any value of x , x^2 is non-negative	
		(ii) For every value of x , there is some value of y s	such
		that $x - y = 1$	
		(iii) There are positive values of x and y such	that
		$x \cdot y > 0$.	[3]
	(c)	Negate each of the following statements:	
		$(i) \forall x, x = x$	
		$(ii) \exists x, x^2 = x$	
		(iii) If there is not, then someone is killed.	[3]
[3762]-601	2	

(b) Obtain conjunctive normal form of each of the following:

- (d) For multisets, define in brief:
 - (i) Multisets
 - (ii) Multiplicity of an element in a multiset
 - (iii) Cardinality of multiset
 - (iv) Union of multiset
 - (v) Intersection of multiset
 - (vi) Difference of multiset.

[6]

- 3. (a) A menu card in a restaurant displays four soups, five main courses, three deserts and 5 beverages. How many different menus can a customer select if:
 - (i) He selects one item from each group without omission.
 - (ii) He chooses to omit the beverages, but selects one each from the other group.
 - (iii) He chooses to omit the deserts, but decides to take a beverage and one item each from the remaining groups. [6]
 - (b) How many automobile licence plates can be made if each plate consists of different letters followed by three different digits. Solve the problem if first digit cannot be 0. [6]

- A pair of fair dice is thrown. If the two numbers appearing are different, find the probability P that (i) the sum is 6 (ii) an ace appears. [4] Or(a) Show that: ${}^{n}C_{1} + 6({}^{n}C_{2}) + 6({}^{n}C_{3}) = n^{3}.$ [6] A fair coin is thrown 10 times. Find the probability of getting exactly 6 heads and at least 6 heads. [4]Define: (c) (i) Trial and event (ii) Exchaustive events and sample space (iii) Favourable events (iv) Mutually exclusive events (v) Equally likely events (vi) Independent events. [6] Find the transitive closure of R be Warshall's algorithm
- **5.** (a) where

A =
$$\{1, 2, 3, 4, 5, 6\}$$
 and
R = $\{(x - y); |x - y| = 2\}.$ [6]

(b)	Draw	the	Hasse	diagran	of	the	follo	owing	set	s und	er the
	partial	ord	lering	relation	'divid	des'	and	indica	ate	those	which
	are ch	nains	:								

- (i) {2, 4, 12, 24}
- (ii) {1, 3, 5, 15, 30}.

[4]

- (c) Explain the following with example:
 - (i) Reflexive relation
 - (ii) Symmetric relation
 - (iii) Antisymmetric relation
 - (iv) Tansitive relation.

[6]

Or

- 6. (a) Let functions f and g be defined by f(x) = 2x + 1 and $g(x) = x^2 2$ respectively. Find:
 - (i) gof (4) and fog(4)
 - (ii) gof(a + 2)

(iii) fog(a + 2).

[6]

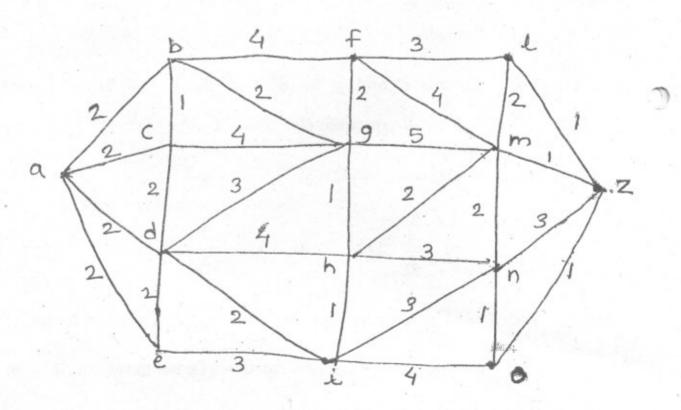
(b) Let $X = \{1, 2, ..., 7\}$ and $R = \{(x, y)|_{x=y}$ is divisible by 3} Show that R is equivalence relation. Draw graph of R. [6] (c) Find the numeric function for:

$$A(z) = \frac{2}{1 - 4z^2}. [4]$$

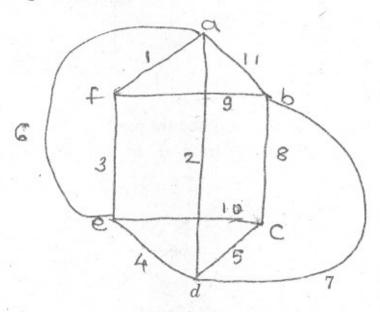
SECTION II

- 7. (a) How many nodes are necessary to construct a graph with exactly 8 edges in which each node is of degree 2. [6]
 - (b) State the Dijkstra's algorithm to obtain the shortest path (distance) between two vertices in the given graph and apply the same to obtain the shortest path between a to z in the following graph:

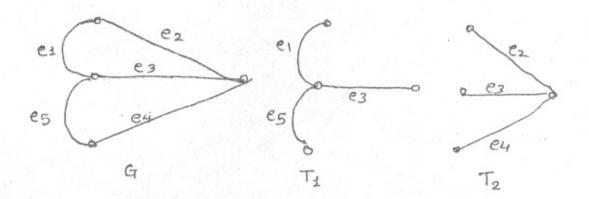
 [12]



8. (a) Determine minimum spanning tree for the given graph using Prim's algorithm. [6]

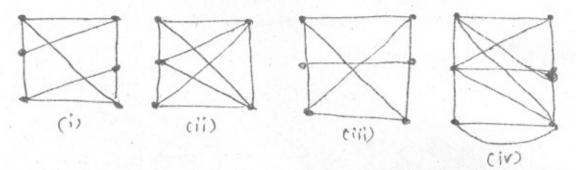


(b) Draw fundamental cut-sets and union of edge disjoint fundamental cut-sets of graph G with respect to trees T_1 and T_2 as shown below: [6]

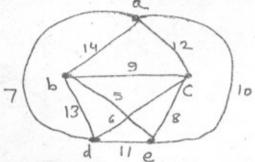


(c) For the following set of weights construct an optimal binary prefix code. For each weight in the set give corresponding code word. 5, 7, 8, 15, 35, 40. [6]

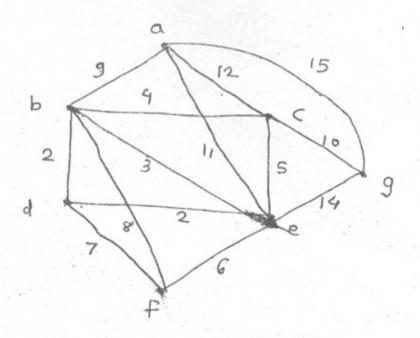
9. (a) Identify whether the graph given are planar or not. [4]



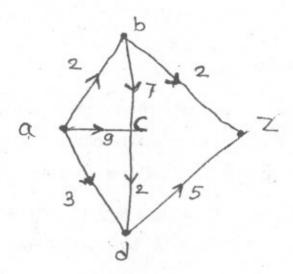
(b) Use nearest neighbour method to find the Hamiltonian circuit starting from α in the following graph. Find its weight.
[6]



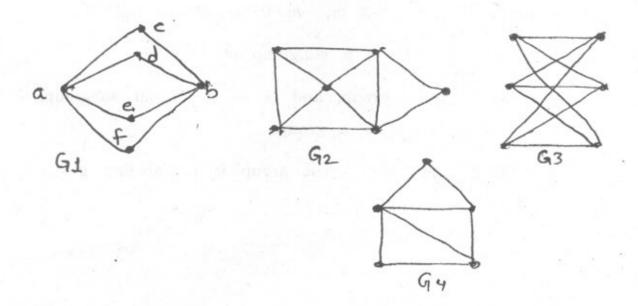
(c) Give the stepwise construction of minimum spanning tree for the following graph using Prim's algorithms. [6]



10. (a) Determine the maximal flow in the following transport network. [6]



(b) Determine which of the graphs of the given figure represent Eulerian circuit, Hamiltonian circuit, Bipartite graphs and planar graph. Justify your answer. [8]



- (c) Draw two non-isomorphic trees with six points. [2]
- 11. (a) Determine whether or not the following operations on the set of integers I are associate:
 - (i) Division
 - '(ii) Exponentiation.

[4]

- (b) G is a group and there exists two relatively prime positive integers m and n such that $a^mb^m = b^ma^m$ and $a^nb^n = b^na^n$ for all $a, b \in G$. Prove that G is an obelian group. [6]
- (c) Show that $R = \{a + b\sqrt{2}; b \in I\}$ for the operation +, × is an integral domain but not a field. [6]

Or

12. (a) I is a group of integers under addition, H is a subset of I consisting of all multiples of a positive integer m: that is

 $H = \{..., -2 \ m, -m \ 0, m, 2 \ m,\},$

show that H is a subgroup of I.

[6]

- (b) Let G be a group, and N be a normal subgroup. Prove that (G/N, *) is a group. [6]
- (c) Prove that every cyclic group is an abelian group. [4]