[3762]-602

# S.E. (Computer Engg.) (I Sem.) EXAMINATION, 2010 ELECTRONIC DEVICES AND CIRCUITS (2003 COURSE)

Time: Three Hours

Maximum Marks: 100

- N.B.:— (i) Answer Question 1 or 2, 3 or 4 and 5 or 6 from Section I and Question 7 or 8, 9 or 10 and 11 or 12 from Section II.
  - (ii) Answers to the two Sections should be written in separate answer-books.
  - (iii) Neat diagrams must be drawn wherever necessary.
  - (iv) Figures to the right indicate full marks.
  - (v) Assume suitable data, if necessary.

#### SECTION I

- (a) Define thermal resistance θ. State its unit. Derive equation of thermal stability in terms of thermal resistance. [8]
  - (b) A voltage divider CE amplifier circuit as shown in Fig. 1, has  $\beta$  = 50,  $V_{BE}$  = 0.7 V. Find  $I_{B}$ ,  $I_{C}$ ,  $V_{CEO}$  and S. [10]



Fig. 1

- Or(a) Compare fixed bias, collector to base bias and self bias circuits [8] with respect to: Circuit diagram (ii) Biasing resistances and its location (iii) Negative feedback (iv) Equation for stability factors. Draw neat circuit diagram of a collector to base bias circuit (b) and derive equations for I<sub>C</sub> and V<sub>CE</sub>. Explain with diagram, how temperature stability is insured in the above circuit. Also [10] define s' and s". Draw Approximate h-parameter model for common emitter 3. transistor circuit with Re. Also derive expression for R<sub>i</sub>, R<sub>o</sub>,  $A_{ij}$ ,  $A_{ij}$  and  $A_{ij}$ . Write a short note on Bootstrapped emitter follower [6] circuit. OrDraw approximate h-parameter model for common emitter
- transistor circuit without Re. Also derive expression for [10] $R_i$ ,  $R_o$ ,  $A_v$ ,  $A_{vs}$  and  $A_i$ .
  - [6] (b) Write a short note on Miller's theorem.
- Explain different methods used for coupling multistage amplifiers 5. (a) [8] with their frequency response.
  - What is the need of multistage amplifier? Explain the selection of configuration for multistage amplifier. [8]

#### Or

What do you understand by large signal amplifier? Classify 6. them on the basis of Q point position and compare them.

(b) In three stage amplifier individual lower and upper cut-off frequency of an amplifier is 1 kHz to 100 kHz. Find bandwidth of cascaded amplifier. [8]

## SECTION II

- 7. (a) What is meant by pinch-off voltage in FET? Draw and explain drain and transfer characteristics for n-Channel FET. [8]
  - (b) Why FET is called voltage operated device? Also give comparison between FET and BJT. [4]
  - (c) The p-channel FET has an  $I_{DSS}=-10$  mA  $V_{P}=5$  V,  $V_{GS}$  is 5.32 V. Calculate drain current, transconductance. [4]

Or

- 8. (a) With the help of neat diagram, explain the operation of p-channel JFET. Also draw symbol of n-channel JFET, n-channel enhancement type MOSFET. [8]
  - (b) For the circuit shown in Fig. 2, p-channel JFET has  $V_P = 8$  V,  $I_{DSS} = 5$  mA. Calculate : [8]
    - (1)  $I_{DSQ}$
    - (2)  $V_{GSQ}$
    - (3)  $V_{DSQ}$



Fig. 2

- 9. (a) Draw the circuit diagram of emitter coupled differential amplifier and obtain its d.c. analysis. [8]
  - (b) What is Schmitt trigger? What are threshold levels and hysteresis? Explain with a neat circuit diagram. [8]

#### Or

- 10. (a) Draw and explain the circuit diagram of a zero crossing detector by using Op-Amp 741. Why Op-Amp can not be used in open configuration as an amplifier? [8]
  - (b) Draw and explain integrator circuit using Op-Amp 741. Also draw input, output waveform. [8]
- 11. (a) Draw and explain two transistor model of SCR. Also explain regenerative action in SCR operation. [8]
  - (b) Compare SCR and TRIAC. Draw and explain step up (Boost) switching regulator with regulating action. [10]

## Or

- 12. (a) Draw and explain on-line UPS. What operating changes are required if the UPS is to be operated as off-line UPS?
  - (b) Explain the construction, operation of Triac and V-I characteristic of Triac with the help of equivalent circuit of it. [10]