[3762]-806

S.E. (IT) (II Sem.) EXAMINATION, 2010 DATA STRUCTURES AND FILES

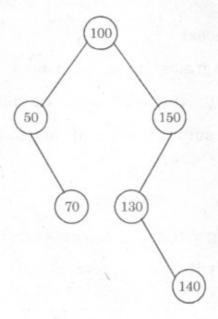
(2003 COURSE)

Time: Three Hours

Maximum Marks: 100

- N.B. :- (i) Answer three questions from Section I and three questions from Section II.
 - Answers to the two Sections should be written in separate (ii)answer-books.
 - Neat diagrams must be drawn wherever necessary. (iii)
 - Figures to the right indicate full marks. (iv)
 - Assume suitable data, if necessary. (v)

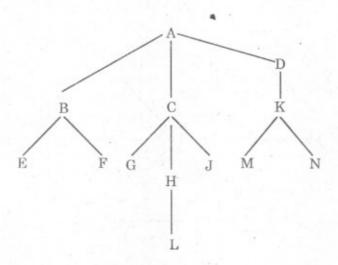
SECTION I


- 1. Write an algorithm for linear search for a list of n numbers. Compare it with binary search with respect to time and space complexity. [6]
 - Define frequency count. (b) [4]

Find the frequency count for given piece of code:

Write pseudo-code for merge operation using DLL. (c) [6]

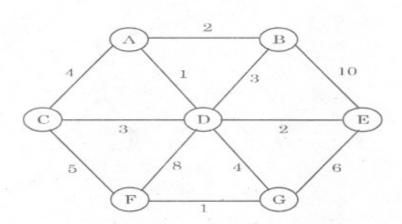
- 2. (a) Write pseudo-code for sparse matrix addition. [6]
 - (b) Write a 'C' function for selection sort. [6]
 - (c) Write a note on asymptotic notations. [4]
- 3. (a) What are the different representations for a binary tree?


 Elaborate with formula if necessary. Represent the given binary tree for those representations:

- (b) Write pseudo-code for inserting into and deleting from a binary search tree. [8]
- (c) Write a 'C' function for non-recursive in-order traversal. [4]

4. (a) List down the steps to convert a general tree to binary tree.

Convert the given general tree to binary tree: [6]

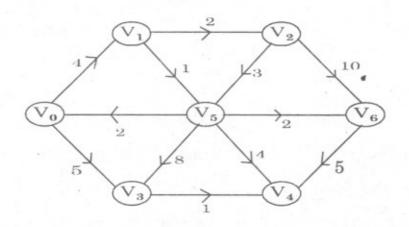


- (b) Write a 'C' function for non-recursive post-order traversal for threaded binary tree. [6]
- (c) Write short notes on: [6]
 - (i) Red and Black trees
 - (ii) Heap data Structure.
- 5. (a) Define the following with examples:

[4]

- (i) In-degree and out-degree of node.
- (ii) Adjacent vertices.

(b) Write pseudo-code for Prim's method for finding minimum spanning tree for a given graph. Find the MST using Prim's for the given graph:



(c) Write non-recursive 'C' function for graph traversal using BFS. [4]

Or

- 6. (a) Write pseudo-code for Kruskal's algorithm for finding minimum spanning tree for any graph. Find the MST using Kruskal's for the graph given in Q. 5(b).
 [8]
 - (b) Write an algorithm to find the shortest path using Dijkstra's algorithm in a graph.

Find the shortest path from V_0 to all other vertices using Dijkstra's algorithm for the given graph: [8]

SECTION II

(a) Obtain AVL tree for the given data : [10]
 MAR, MAY, NOV, AUG, APR, JAN, DEC, JULY, FEB, JUN, OCT, SEP

Show the balance factor and rotation for each step.

- (b) Write notes on :
 - (i) Symbol table
 - (ii) Static and dynamic trees.

Or

8. (a) For the given data build the Huffman's tree and explain each step separately: [9]

Data Item	Frequency
A	15
В	6
C	7
D	12

[8]

		F		25		
		I	7	4		
			ž	6		
		I	H	1		
			ı	15		
	(b)	Perform heapsort to sort the given list of data items. Show				
		each step for creating	a max heap	and show each step	to	
		sort the heap:			[9]	
		30, 31, 32, 23, 22	, 28, 24, 29,	26, 27, 34, 36.		
9.	(a)	State the principle of or	otimality and	explain how 0/1 Knapsa	ack	
		problem can be solved	using dynan	nic programming. [10]	
	(b)	Write pseudo-code for quicksort. Mention the algorithmic strategy				
		used.	1 400		[6]	
			Or			
10.	(a)	State job sequencing w	ith deadlines	problem and explain h	ow	
		it is solved using gree	edy strategy	with example.	[8]	
	(b)	Mention the algorithmic	strategy for	merge sort. Sort the giv	zen.	
		nos. using merge sort	:		[8]	
		40, 60, 70, 50, 20	, 10, 30.			
11.	(a)	Write pseudo-code for	performing	primitive operations	on	
		sequential file.			[8]	
IOF O	01 000		0			

[3762]-806

- (b) What is meant by collision? Explain the following collision avoidance techniques with examples: [8]
 - (i) Linear probing
 - (ii) Chaining without replacement.

Or

- 12. (a) Write a note on hashing and different collision resolution techniques. [8]
 - (b) Write pseudo-code for performing primitive operations on simple index file. [8]