S.E. (IT) (Second Semester) EXAMINATION, 2010 DATA STRUCTURES AND FILES (2008 COURSE)

70:		Thurs	Harres
Time	:	Inree	Hours

Maximum Marks: 100

- N.B. :- (i) Answer any three questions from each Section.
 - (ii) Answers to the two sections should be written in separate answer-books.
 - Neat diagrams must be drawn wherever necessary.
 - (iv) Figures to the right indicate full marks.
 - (v) Assume suitable data, if necessary.

SECTION I

- Write an algorithm for chaining with replacement used as a 1. technique for synonym resolution. [8]
- State advantages and disadvantages of indexed file and sequential (b) file. [6]
 - (c) Write characteristics of good Hash function. [4]

the applicator and the data strategies and

- (a) Write notes on sequential and direct access file 2. organizations. [6]
 - Write an algorithm for linear probing without replacement strategy. [4]

P.T.O.

For the given set of values: 8, 41, 15, 60, 10, 76, 85, 11, 109, 43 Create a Hash table and resolve collisions using chaining with and without replacement. (Hash function to be used: X Mod 10) [8] 3. Clearly indicate the contents of stack during evaluation of the (a) following postfix expression: ab - cd/*e+ The values are : a = 8, b = 6, c = 10, d = 5, e = 7. [8] Write the 'C' code for stack as ADT. (b) [8] Write an algorithm to convert an infix expression to prefix (a) 4. form. [8] What do you understand by Multistack? Give the 'C' structure (b) · representation of the same. Use this representation to implement Push and Pop operations. [8] Define linear queue. How to represent it using linked-5. (a) organization? Explain its any one application in detail. [10] What are the applications of the data structure priority (b) queue? [4][2] Define dequeue and give its example. (c) What is priority queue ? What is its use ? Give the function (a) 6. to add an element in priority queue. [10]2 [3762]-235

(b) Define Multiqueue.

- [2]
- (c) Explain the advantage of circular queue over linear queue with an example. [4]

SECTION II

- 7. (a) Write an algorithm to accept a prefix expression and construct its binary tree and perform recursive and non-recursive inorder traversal of the tree. [10]
 - (b) Suppose the following sequences list the nodes of a binary tree T in pre-order and in-order, respectively:

Pre-order	In-order
G	Q
В	В
Q	K
A	C
C	F
K	A
F	G
P	Р.
D	E
E	D
R	Н
Н	R

Draw the tree.

[6]

(c) Define and give example of in-order threaded binary tree. [2]

8. (a) What is the necessity of converting a tree into binary tree?

Given the following tree:

Convert it into a binary tree and list down the steps for the same.

- (b) Write an algorithms to delete a node from binary search tree. [6]
- (c) Write recursive algorithm to find number of leaf nodes and the height of binary tree. [6]
- 9. (a) For the graph given below, find BFS & DFS. (Show steps)

- (b) Describe various ways in which graphs are represented. [6]
- (c) Define minimum spanning tree with an example. [2]

Or

- 10. (a) Give the definition with an example for the following terms:
 - (i) Subgraph
 - (ii) Strongly connected component

[2]

(b) Find minimum spanning tree using Prim's and Kruskal's method for the following graph. Write algorithm for any one of the above two methods: [10]

(c) Write a short note on Dijkstra's algorithm.

[4]

11. (a) Sort the following numbers in ascending order using heap sort:

2, 3, 6, 4, 35, 72, 11, 5, 61

Show the sorting stepwise.

[8]

(b) Give one example each for each of the four types of rotations possible in an AVL tree with explanation. [8]

Or

12. (a) Obtain an AVL tree by inserting one integer at a time in the following sequence:

148, 153, 158, 1000, 112, 145, 120, 149, 128, 146

Label the rotations appropriately at each stage.

[10]

(b) Explain the steps to encode and decode the following data using Huffman's algorithm: [6]

Data	Frequency
P	18
Q	8
R	15
S	2
T	25
U	13
V	5
W	26

(b) Give one example each for each of the four types of rotations possible in an AVL tree with explanation. [8]

Or

12. (a) Obtain an AVL tree by inserting one integer at a time in the following sequence:

148, 153, 158, 1000, 112, 145, 120, 149, 128, 146

Label the rotations appropriately at each stage. [10]

(b) Explain the steps to encode and decode the following data using Huffman's algorithm: [6]

Data	Frequency
P	18
Q	8
R	15
S	2
T	25
U	13
V	5
W	26