S.E. (Information Technology) (II Sem.) EXAMINATION, 2010 PROCESSOR ARCHITECTURE AND INTERFACING (2008 COURSE)

Time: Three Hours

Maximum Marks: 100

- N.B. :— (i) Answer Question Nos. 1 or 2, 3 or 4 and 5 or 6 from Section I and Question Nos. 7 or 8, 9 or 10 and 11 or 12 from Section II.
 - (ii) Answers to the two Sections should be written in separate answer-books.
 - (iii) Neat diagrams must be drawn wherever necessary.
 - (iv) Figures to the right indicate full marks.
 - (v) Assume suitable data, if necessary.

SECTION I

- 1. (a) Write features of 80386. Draw real mode register set of 80386 and explain their function. [10]
 - (b) Explain significance of the following signals of 80386: [8]
 - (i) D/C
 - (ii) ERROR
 - (iii) NMI
 - (iv) READY.

Or

- 2. (a) State and explain any *five* memory addressing modes of 80386 with example showing physical address generation. [10]
 - (b) Draw timing diagram of write machine cycle for 80386. Show status of important signals and list activities carried out in sequence. [8]

3.	(a)	What are the components of MS-DOS? What is the difference
		between DOS and BIOS interrupts or calls. [8]
	(b)	Compare and contrast: [8]
		(i) Procedure and Macro
		(ii) FAR & NEAR Call.
		Or
4.	(a)	Draw Interfacing diagram to interface a 4×4 Hex keyboard
		to 8255. Find control word of 8255 for this interface. Write
		an algorithm to detect key press using keyboard scanning
		method. [8]
	(b)	State the syntax and mention operations carried out by 80386
		microprocessor to execute the following instructions: [8]
		(i) XLAT
		(ii) CWD
		(iii) LOOP
		(iv) REP.
5.	(a)	With neat diagrams explain process of address translation in
		protected mode of 80386 when paging is enabled. [10]
	(b)	Write difference between real and protected mode of 80386-
		with respect to:
		(i) Memory segmentation
		(ii) Physical address generation
		(iii) Instruction set.
		Or
6.	(a)	What is DPL, RPL and CPL? Write privilege checks performed

mechanism.

by 80386 while accessing code or data with protection

[10]

	(b)	What is descriptor cache? When are they accessed by
		80386 ? What is its use ? [6]
		SECTION II
7.	(a)	CALL gate acts as an interface layer to a code with different
		privilege levels. Justify the statement with the help of CALL
		gate descriptor. [8]
	(b)	Specify size and function of LDTR, IDTR and TR. [6]
	(c)	Write stack related steps performed by 80386 processor in
		executing an inter-level CALL. [4]
		Or
8.	(a)	What is TSS and TSS descriptor ? Explain the function and
		reaction of 80386 when the task switch occurs. [8]
	(b)	What is the different between the Trap gate descriptor and
		the interrupt gate descriptor ? [6]
	(c)	What is confirming code segment? [4]
9.	(a)	Draw and explain functional block diagram of 8051. [8]
	(b)	Compare with respect to use and operations carried out by
		8051 :
		(i) RET & RETI
		(ii) SJMP & AJMP.
		Or
10.	(a)	State and justify addressing mode of the following 8051
		instructions: [8]
		(i) MOVX A, @DPTR
		(ii) MOVC A, @A + PC
		(iii) ADD A, #10
		(iv) MUL AB.

- (b) List interrupts supported by 8051 with their vector addresses and default priorities. Explain interrupt programming with the help of IE and IP special function registers. [8]
- of mode 1 for baud rate generation in serial communication with the help of TMOD & TCON SFRs. [8]
 - (b) List the features of PIC microcontroller and write a comment on Harward architecture of PIC microcontroller. [8]

Or

- 12. (a) Draw asynchronous serial communication format. Explain SCON, SBUF & PCON special function registers and their utility.
 [8]
 - (b) Write 8051 algorithm to generate square wave of 2 kHz frequency with ISR based timer programming in mode 2. Show calculations involved. Assume crystal frequency of 11.0592 MHz. [8]