P.T.O.

T.E. (Mechanical) (Semester – II) Examination, 2010 TRIBOLOGY (2003 Course)

ım	e:.	5 Hours : Max. Marks :	100
	Ins	structions: 1) Answers to the two Sections should be written in separate books.	
		2) Neat diagrams must be drawn wherever necessary.	
		3) Black figures to the right indicate full marks.	
		4) Use of logarithmic tables, slide rule, Mollier charts, electro	nic
		pocket calculator and steam tables is allowed .	
		5) Assume suitable data, if necessary.	
		SECTION – I	
1.	a)	Explain with the help of suitable examples the importance of 'Tribology' in t	he
		design of machine elements.	8
	b)	Explain different types of additives used to improve the properties of lubrica oils.	ting 6
	c)	What do you understand by 10W/30 motor oil? OR	2
2.	a)		4+4)
		1) Types and Use of Greases.	
		2) Factors influencing the selection of lubricants.	
	b)	Discuss in short the effect of temperature and pressure on viscosity of	
	0)	lubricating oil.	6
	c)	What is the relation between Absolute viscosity and Kinematic viscosity? W	rite
		S.I. units of both.	2
3.	a)	What is meant by Abrasive wear? Deduce the equation for volume of abrasi	ive
		wear per unit sliding distance with conical abrasive particles.	6
	b)	Explain the theory of friction "Junction growth theory".	4
	c)	What are the factors affecting wear rate?	4

	d)	What do you understand by Conformal Geometry tests in relation to friction measurement? OR	2				
4.	a)	Name any four different experimental methods of wear measurement. Explain any one of them.	6				
	b)	Explain in short:					
		i) Stick slip phenomenon	4				
		ii) Fretting.	4				
	c)	List the causes of friction.	2				
5.	a)	Explain the mechanism of pressure development in Hydrodynamic Lubrication.	6				
	b)	Derive Reynolds Equation for two dimensional flow. Also state the assumption in the derivation. What is the difference between Infinitely long and Infinitely short journal bearings? (8+2+OR					
6.	a)	The following data is given for full hydrodynamic bearing: (Use table 1)	8				
		1/d ratio = 1					
		Bearing length = 50 mm					
		Eccentricity = 15 microns					
		Radial clearance = 20 microns					
		Journal Speed = 1450 rpm					
		Radial Load = 10 kN					
		Sp. Gravityof lubricant = 0.86					
		Calculate					
		i) Minimum oil film thickness					
		ii) Coefficient of friction					
		iii) Viscosity of the lubricant					
		iv) Total flow rate of the lubricant in lit/min.					
	b)	Discuss different regimes of lubrication with the help of Stribeck curve.	6				

c) Write Petroff Equation. State its usefulness.

4

Table	1	:	Dimensionless	Parameters	for	Full	Journal	bearings
-------	---	---	---------------	------------	-----	------	---------	----------

<u>/</u> d	h _o c	€	S = (2)2-41NS	$\left(\frac{\mathbf{r}}{\mathbf{c}}\right)\mathbf{f}$	Q r cn _s I	$\frac{Q_s}{Q}$	<u>P</u> max p
1.	0.0	1.0	0	0	-	1.0	-
	0.03	0.97	0.00474	0.514	4.82	0.973	6.579
	0.1	0.9	0.0188	1.05	4.74	0.919	4.048
	0.2	8.0	0.0446	1.70	4.62	0.842	3.195
	0.4	0.6	0.121	3.22	4.33	0.680	2.409
	0.6	0.4	0.264	5.79	3.99	0.497	2.066
	0.8	0.2	0.631	12.8	3.59	0.280	1.890
	0.9	0.1	1.33	26.4	3.37	0.150	1.852
	1.0	0.0	00	50	3.142	0	

SECTION - II

- 7. a) Discuss the advantages, limitations and applications of Hydrostatic Lubrication. (3+3+2=8)
 - b) Show that in case of hydrostatic step bearing with shaft rotating at exceptionally low speed, for a given load carrying capacity and a shaft diameter, the power loss is minimum when:

Recess diameter = $0.53 \times \text{shaft}$ diameter.

8

OR

8. a) The following data refers to the hydrostatic step bearing used for vertical shaft.

Thrust load 1 kN

Inlet pressure 8 MPa

Ratio of recess diameter to shaft diameter 0.5

Oil film thickness 20 µm

Viscosity of lubricant 35 cP

Shaft speed 100 rpm

Specific heat of lubricant 2.1 kJ/Kg °C

		Specific gravity of lubricant 0.86						
		Calculate:						
		i) Shaft and recess diameter						
		ii) Flow rate of lubricant						
		iii) Frictional power loss						
		iv) Pumping power loss	8					
	b)	Derive the equation of flow rate of viscous fluid through rectangular slot. Also state the assumptions while deriving the equation.	8					
9.	par fili ap vis	Derive the expressions for load carrying capacity and time of approach in case of two parallel rectangular plates of infinite width and separated by a fluid film. Two parallel rectangular plates with width to length ratio of 4 are separated by an oil film of thickness 0.1 mm at the beginning of load cycle. The load of 12 kN is applied on the upper plate for 5 seconds, the lower plate being stationary. If the viscosity of oil and the permissible minimum oil film thickness are 30 cP and						
	0.0	O2 mm respectively, calculate the length and width of plates. (12+0)	4)					
10.	a)	Explain the phenomenon of Squeeze film lubrication? State two examples where this type of lubrication is observed.	4					
	b)	Write notes on	12					
		i) Lubrication in metal working						
		ii) Gas lubricated bearing.						
41.	a)	Derive the equation for pressure distribution and load carrying capacity of infinite width tapered pad bearing.	1					
	b)	Explain the phenomenon of Elastohydrodynamic lubrication. How does it differ from Hydrodynamic lubrication? (4+	2)					
		OR OR						
12.	a)	What are the desirable properties of bearing materials? List few suitable materials for bearing.	6					
	b)	Write notes on	12					
		i) Gaskets						
		ii) Oil seals						
		iii) Types of hydrodynamic thrust bearing.						