

Total No. of Questions: 12]

SEAT No.:		
CELEBRA		

P2100

B.E. (Semester - I) VLSI DESIGN Electronics Engineering (2008 Pattern)

Time: 3 Hours]

[Max. Marks : 100

Instructions to the candidates:

- 1) Answers to the two sections should be written in separate answer books.
- 2) Answer Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6 from Section I & Q.7 or Q.8, Q.9 or Q.10, Q.11 or Q.12 from Section II.
- 3) Answer any three questions from each section.
- 4) Neat diagrams must be drawn wherever necessary.
- 5) Figures to the right side indicate full marks.
- 6) Use of Calculator is allowed.
- 7) Assume suitable data, if necessary.

SECTION - I

- Q1) a) Explain the transmission gate. Design Y = AC + AD + B using transmission gate. State the advantages of transmission gate over conventional gates.[8]
 - b) Explain technology scaling. Describe the various effect of scaling on the wires, memory, time, architecture. [8]

OR

- Q2) a) Explain the static & dynamic power dissipation. Derive an expression for power delay product.[8]
 - b) Explain CMOS inverter and its transfer characteristics in detail. How to achieve symmetry in these characteristics. [8]

Q3)	a)	Explain SRAM in detail with suitable diagram.	[8]		
	b)	Differentiate between SRAM & DRAM technologies.	[8]		
OR					
Q4)	a)	Give the classification of memory with the application in each case.	[8]		
	b)	Explain DRAM in detail.	[8]		
Q5)	a)	Write a VHDL code for a 4 bit Up/Down counter. Also write a bench for it.	test		
	b)	Compare synthesizable and non-synthesizable statements we examples.	ith [9]		
		OR			
Q6)	a)	Differentiate Moore and Mealy machine with suitable examples.	[9]		
	b)	Explain with example(s) data types and objects types in VHDL.	[9]		
		SECTION - II			
Q7)	a)	Differentiate the logic implementation between CPLD and FPGA.	[8]		
	b)	With neat schematic, explain the architectural building blocks of FPG Give limitations of FPGA over CPLD.	GA. [8]		
		OP			
		OR			
Q8)	a)	Draw & explain CMOS architecture of SRAM.	[8]		
	b)	Compare between PLDS, CPLDs, FPGAs and ASICS.	[8]		

Q9) a)	What are the types of fault? Explain with schematic. [8]
b)	Explain JTAG. What are the various pins involved? [8]
	OR
<i>Q10)</i> a)	What are objectives of boundary scan techniques? Explain boundary scan in detail. [8]
b)	Explain TAP controller with state diagram. [8]
<i>Q11)</i> a)	What it the need of check rule? Explain SRC and DRC with their limitations. [9]
b)	What is power optimization? Explain the methods of optimization at various levels. [9]
	OR
<i>Q12)</i> a)	What are the problems in one phase clock? Explain the concept of two phase clock with example. [9]
b)	Explain the following terms: [9]
	Switch Box Routing.
	Global Routing.
	Power distribution.