Total I	No oj	Questions: [12] SEAT NO.:					
		[Total No. of Pages : 6]					
		B.E. Mechanical (2008 Pattern)					
		Finite Element Method					
		(Elective - III) (Semester - II)					
		Time: 3 Hours Max. Marks: 100					
Instru	ction	s to the candidates:					
1) Answers to the two sections should be written in separate answer books.							
		t diagrams must be drawn wherever necessary.					
	3) Figures to the right side indicate full marks.						
4)	Use	of Calculator is allowed.					
5)	Ass	ume Suitable data if necessary.					
6)	Ada	litional data sheet is attached for the reference.					
		SECTION I					
		Unit I					
Q1)	a)	Explain how banded skyline solution method is used to solve simultaneous equations.	[8]				
1	b)	List at least 6 advantages of Finite Element Method over analytical method. Also list	[8]				
		disadvantages or limitations of FEM.					
00)		OR					
Q2)	a)	Explain the terms essential and natural boundary conditions. Give example of each.	[8]				
	b)	Explain in detail the method of matrix partitioning and how it is used to impose boundary	[8]				
		conditions in finite element method.					
(02)		Unit II	[10]				
Q3)	.a)	, ,					
		and area A = 200 mm ² .					
	i. write down the elemental stiffness matrices (k) for each element, ii. assemble k matrices to get global stiffness matrix (K),						
		iii. apply boundary conditions,					
		iv. find horizontal and vertical displacements of node 1,					
		v. determine reaction forces at node 2, 3 and 4.					
		12 kN					
		1					
		500 mm 400 mm					
1							
		1 4 7					
		300 mm					
		3 1					
		Figure 3a					
	b)	For the five spring assemblage shown in Figure 3b, determine the displacements at nodes 2 and 3	[8]				
and the reactions at nodes 1 and 4. Assume the rigid vertical bars at nodes 2 and 3 connections							
springs remain horizontal at all times but are free to slide or displace left or right. There is an applied force at node 3 of 1000 N to the right. Consider $k1 = 500$ N/mm, $k2 = k3 = 300$ N/mm,							

DATA SHEET						
	Shape Functions:					
	1	Bar Element:				
	$N_1 = 1 - \frac{x}{L} \qquad N_2 = \frac{x}{L}$	31				
	2 Beam Element:					
$N_1 = \frac{1}{L^3} (2x^3 - 3x^2L + L^3)$						
$N_2 = \frac{1}{L^3} (x^3 L - 2x^2 L^2 + xL^3)$ $N_3 = \frac{1}{L^3} (-2x^3 + 3x^2 L)$						
	Ele	emental Stiffness Matrices:				
	1	Bar Element:				
		$k_{bar} = \frac{AE}{L} \left[\begin{array}{cc} 1 & -1 \\ -1 & 1 \end{array} \right]$				
	2	Beam Element:				
	3	$k_{beam} = \frac{EI}{L^3} \begin{bmatrix} 12 & 6L & -12 & 6L \\ 6L & 4L^2 & -6L & 2L^2 \\ -12 & -6L & 12 & -6L \\ 6L & 2L^2 & -6L & 4L^2 \end{bmatrix}$				
	Truss Element:					
$C = \cos(\theta)$ and $S = \sin(\theta)$ θ is positive in anti clockwise direction.						
		$k_{truss} = \frac{AE}{L} \begin{bmatrix} C^2 & CS & -C^2 & -CS \\ CS & S^2 & -CS & -S^2 \\ -C^2 & -CS & C^2 & CS \\ -CS & -S^2 & CS & S^2 \end{bmatrix}$				
	Ele	emental Mass Matrices:				
	1	Bar Element:				
	(a)	Consistent mass matrix:				
		$m_{consistent} = \frac{\rho AL}{6} \begin{bmatrix} 2 & 1\\ 1 & 2 \end{bmatrix}$				

	¥	(b)	Lumped mass matrix:						
-		()		0.1		-			
$m_{lumped} = \frac{\rho AL}{2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$									
L									
-		(a)	Beam Element: Consistent mass matrix:	5					
ŀ									
				$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} 4 & -13L \\ L & -3L^2 \\ 6 & -22L \\ L & 4L^2 \end{bmatrix}$				
-		(b) Lumped mass matrix:							
$m_{lumped} = \frac{\rho AL}{2} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$									
-		He	at Transfer Matrices						
ŀ		k matrix for Conduction + Convection for bar element:							
			$k = \frac{AK}{L} \left[\begin{array}{cc} 1 & -1 \\ -1 & 1 \end{array} \right]$] 0 [+ -]					
			where, $A = cross sectional are$	ea, K = Thermal Conductivity	, L = Length of an element,				
-			n = Convection Coefficient, a	and P = Perimeter.					
-		Ga	uss Quadrature:						
+			Table for Gauss Points for in						
		$\int_{-1}^{1} y(x)dx = \sum_{i=1}^{n} W_i y_i$							
0			Number of Points	Locations, x_i	Associated Weights, W_i				
1	y		1	$x_1 = 0.000$	2.000				
			2	$x_1, x_2 = \pm \ 0.57735$	1.000				
			3	$x_1, x_3 = \pm 0.77459$	5/9 = 0.55556				
				$x_2 = 0.000$	8/9 = 0.88889				
			4	$x_1, x_4 = \pm 0.86113$	0.34785				
				$x_2, x_3 = \pm \ 0.33998$	0.65214				