Total No. of Questions: 6]

P2017

SEAT	No.	:		
------	-----	---	--	--

[Total No. of Pages: 3

F.E. (Common) PHYSICS Applied Science - II (2008 Pattern)

Time: 2 Hours]

[Max. Marks: 50

Instructions to the candidates:

- 1) Answer any three (1 or 2, 3 or 4, 5 or 6) questions.
- 2) Figures to the right indicate full marks.
- 3) Neat diagrams must be drawn wherever necessary.
- 4) Use of logarithmic tables, slide rule, Mollier charts, electronic pocket calculator and steam tables is allowed.
- 5) Assume suitable data, if necessary.

Constants: $h = 6.63 \times 10^{-34} \text{ J.sec.}$ $m_e = 9.1 \times 10^{-31} \text{ kg}$ $m_p = 1.67 \times 10^{-27} \text{ kg}$ $e = 1.6 \times 10^{-19} \text{ C}$

 $c = 3 \times 10^8$ m/sec.

- Q1) a) Derive the eigen energy formula and draw the first three wave functions for a particle confined in a rigid box?[7]
 - b) Derive Schroedingers' time dependent wave equation. [6]
 - c) A proton and an alpha particle are accelerated by the same P.D. find the relation between wavelengths of their corresponding matter waves. [4]

OR

- Q2) a) Explain group velocity and phase velocity. Derive the expression with which a wave group travels.[7]
 - b) State and illustrate Heisenberg's uncertainty principle by diffraction of electron. [6]
 - c) An electron bound by a potential which closely approaches an infinite square well of width 1AU.

Calculate the lowest three permissible energies the electron can have. [4]

Q3)	a)	Draw a neat diagram of gas laser. Explain its principle, construction ar working.		
	b)	Explain following properties of superconductors:		
		i) Critical magnetic field		
		ii) Zero electrical resistance		
	c)	Explain Holography in brief. [4]		
		OR		
Q4)	a)	Explain population inversion and spontaneous emission. Also write down the properties and applications of lasers. [7]		
	b)	With the help of energy band diagram explain construction and working of semiconductor Laser. [6]		
	c)	Explain Meissner effect in superconductors. [4]		
Q5)	a)	Using Fermi Dirac probability distribution function, derive an expression for the position of Fermi energy level in the intrinsic semiconductor.[6]		
	b)	Explain the optical and electrical properties of nanoparticles. [6]		
	c)	An N type semiconductor is to have a resistivity 10 ohmcm. Calculate the number of donor atoms which must be added to achieve this [4]		
		$\left(\mu d=500 \text{cm}^2 / VS\right)$		

OR

- Q6) a) Explain Hall Effect in semiconductors. Derive the equation of hall voltage and hall co-efficient.[6]
 - b) Explain synthesis of metal nanoparticles by colloidal route. [6]
 - c) Calculate the conductivity of a germanium sample if one donor impurity is added to the extent of one part in 10^7 germanium atoms at room temperature. (Avagodro no. = 6.02×10^{23} , atomic wt.of Ge = 72.6, mobility of electrons = $3800 \text{ cm}^2/\text{VS}$, density of Ge = 5.32 gm/cc) [4]