Total No of Questions: [12]

SEAT NO. :

[Total No. of Pages : 3]

Max. Marks: 100

FE 2008 COURSE BASIC ELECTRICAL ENGINEERING

20

Time: 3 Hours

Instructions to the candidates:

1) Answers to the two sections should be written in separate answer books.

- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right side indicate full marks.
- 4) Use of Calculator is allowed.

5) Assume Suitable data if necessary

SECTION I

Q.1 (a) Define Resistance Temperature Coefficient (RTC). State its unit. With usual notations 8M prove that

$\alpha_2 = \alpha_1 / [1 + \alpha_1 (t_2 - t_1)]$

(b) An electric pump lifts 12 m³ of water per minute to a height of 15 meters. If its overall 8M efficiency is 60 %, find the input power. If the pump is used for 4 hours a day find the cost of energy for the month of April.

OR

Q.2	(a)	Define insulation resistance & Derive its expression for single core cable.	8M
	(b)	With neat sketch explain construction & working of Lead Acid Battery.	8M
Q.3	(a)	State & Prove maximum power transfer theorem as applied to a d c resistive circuit.	8M
	(b)	Obtain the equations to convert delta connected resistive network into equivalent star connected network.	8M
		OR	
Q.4	(a)	State & explain Kirchoff's laws as applied to a d c circuit.	8M
	(b)	State & explain Superposition Theorem as applied to a d c circuit.	8M
Q.5	(a)	Compare Electric circuit with magnetic circuit stating clearly the similarities & dissimilarities.	8M
	(b)	Define self inductance of a coil. & hence state the factors that affect its value.	4M
	(c)	The length of an air cored solenoid is 1.7 m & area of cross section is 12 cm ² . The number of turns of the coil is 1000. Calculate-	6M
		a) the self inductance b) the energy stored in the magnetic field when a current of 10 A flows through the coil.	

Total No of Questions: [12]

SEAT NO. :

[Total No. of Pages : 3]

FE 2008 COURSE BASIC ELECTRICAL ENGINEERING

20

Time: 3 Hours

Instructions to the candidates:

- 1) Answers to the two sections should be written in separate answer books.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right side indicate full marks.
- 4) Use of Calculator is allowed.

5) Assume Suitable data if necessary

SECTION I

Q.1 (a) Define Resistance Temperature Coefficient (RTC). State its unit. With usual notations 8M prove that

$$\alpha_2 = \alpha_1 / [1 + \alpha_1 (t_2 - t_1)]$$

(b) An electric pump lifts 12 m³ of water per minute to a height of 15 meters. If its overall 8M efficiency is 60 %, find the input power. If the pump is used for 4 hours a day find the cost of energy for the month of April.

OR

Q.2	(a)	Define insulation resistance & Derive its expression for single core cable.	8M
	(b)	With neat sketch explain construction & working of Lead Acid Battery.	8M
Q.3	(a)	State & Prove maximum power transfer theorem as applied to a d c resistive circuit.	8M
	(b)	Obtain the equations to convert delta connected resistive network into equivalent star connected network.	8M
		OR	
Q.4	(a)	State & explain Kirchoff's laws as applied to a d c circuit.	8M
	(b)	State & explain Superposition Theorem as applied to a d c circuit.	8M
Q.5	(a)	Compare Electric circuit with magnetic circuit stating clearly the similarities & dissimilarities.	8M
	(b)	Define self inductance of a coil. & hence state the factors that affect its value.	4M
	(c)	The length of an air cored solenoid is 1.7 m & area of cross section is 12 cm ² . The number of turns of the coil is 1000. Calculate-	6M
		a) the self inductance b) the energy stored in the magnetic field when a current of 10 A flows through the coil.	

Max. Marks: 100

Q.6	(a)	Define & state units of	i) Reluctance	ii) MMF	8M	
			iii) Magnetic flux density	iv) permeance		
	(b)	Compare statically induced emf & Dynamically induced emf				
	(c)	Define coefficient of coupling & Derive expression for it.				
SECTION II						
Q.7	(a)	Define Average value of sinusoidally varying quantity. Derive its expression in terms of 8 its peak value.				
	(b)	Two capacitors of 8 μ f & 2 μ f are connected in series across 400 V supply. Calculate i) resultant capacitance ii) charge on each capacitor iii) voltage across each capacitor.				
	(c)	Define & state the units of -	i) Electric flux density ii) I	Electric field intensity	4M	
			OR			
Q.8	(a)	Define RMS value of sinusoid peak value.	dally varying quantity. Der	ive its expression in terms of its	8M	
	(b)	An alternating current is give	en by i= 14.14 sin 377t.	Find i) RMS value of current	6M	
		li) Frequency iii) instantaneo origin & increasing positively		s msec. Assume wave starts from		
	(c)	Define - i) Form factor	ii) Peak factor		4M	
Q.9	(a)	tance of 0.1 H & capacitance of 50 z supply. Calculate – i) current nd reactive power consumed by	8M			
	(b)	Define the terms – i) admitt State their units. Draw admi		usceptance as related to a c circuit.	8M	
			OR			
Q.10	(a)			n parallel. If the total current ind the current and power taken	8M	
	(b)			= V _m sinωt volts is applied across his case. Also state the expression	8M	
Q.11	(a)	Write short notes on - i) Los	sses in transformer ii)	Dimmerstat	8M	
	(b)	Three identical coils each ha connected in delta across a			8M	
		i) Phase current ii) line curre	ent iii) total power consum	ned by load.		

OR

- Q.12 (a) With the help of neat circuit diagram describe the method of performing direct load 8M test on a single phase transformer. Explain how efficiency & regulation can be calculated in this case.
 - (b) Derive the emf equation of single phase transformer. 4M
 - (c) State the relationship between line value & phase value of voltage and current for 3 4M phase star connected load. Also state the expression for active power and reactive power.
