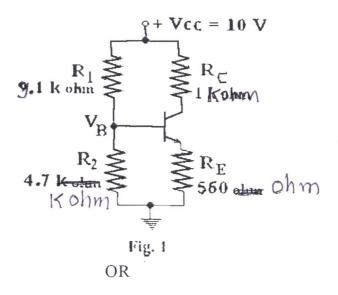
P2205

SEAT	No.						
I	Tota	ıl	No.	of	Pages	:	2


F.E. (Semester - II) **BASIC ELECTRONICS ENGINEERING** (2008 Pattern)

Time: 2 Hours]

[Max. Marks: 50

Instructions to the candidates:

- Answer Q.1 or Q.2, Q.3 or Q.4 & Q.5 or Q.6.
- Neat diagrams must be drawn wherever necessary. 2)
- 3) Use of Calculator is allowed.
- Figures to the right side indicate full marks. 4)
- Assume Suitable data if necessary.
- Q1) a) For HWR, define & derive the expressions for following parameters: [8]
- i) I_{Ldc} ii) V_{Ldc} iii) $\%\eta$ iv) RF,
- b) Calculate the Q-point for cricuit shown in Fig. 1). Assume $\beta_{dc} = 100.$ [8]

- (Q2) a) Explain principle of operation & characteristics of LED. State various materials used to fabricate LED. Enlist its advantages, disadvantages & applications.
 - b) Explain construction, working, V-I characteristics, specifications & applications of TRIAC. [8]

Q3)	a)	Draw neat circuit diagram & explain closed loop non-inverting adder (Summing Amplifier) using OP-AMP. Derive the expression for V _o .[8]						
	b)	Draw & explain operation of following gates using CMOS. (Any 2) [8]						
		i) AND, ii) NOR, iii) EX-OR						
		OR						
Q4)	a)	For RC Phase shift Oscillator Circuit, three identical phase shifting network of R = 10 k Ω & C = 0.01 μ F are used. Determine the frequency of oscillation. [4]						
	b)	Design non-inverting OP-AMP to obtain gain of 61. Assume input resistor is $1 \text{ k}\Omega$ [4]						
	c)	Draw & explain block diagram of Micro - controller. State its advantages. [8]						
Q5)	a)	Draw constructional details of LVDT (Displacement Transducer). Explain its operation. State its advantages, disadvantages, limitations, range, specifications & applications. [6]						
	b)	Explain in brief different types of Strain Gauges. [6]						
	c)	Draw & explain block diagram of Mobile Communication System. [6]						
		OR						
Q6)	a)	Write short note on: (Any 2) [6]						
		i) Two Wire Transmitter ii) PID Controller						
		iii) Data Logger iv) PLC System						
	b)	Draw & explain block diagram of Superheterodyning Receiver. [6]						
	c)	Draw & explain Electromagnetic (IEEE Frequency) Spectrum. [6]						

