Total No. of Questions: 12]

P2020

SEAT No.			
-	_		

[Total No. of Pages: 6

F.E. (Semester - II) ENGINEERING MATHEMATICS - II (2008 Course)

Time: 3 Hours]

[Max. Marks: 100

Instructions to the candidates:

- In section I Solve Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6. In section-II Solve Q.7 or Q.8, Q.9 or Q.10, Q.11 or Q.12.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right indicate full marks.
- 4) Use of non programmable electronic pocket calculator is allowed.
- 5) Assume suitable data, if necessary.

SECTION - I

- Q1) a) Form the differential equation whose general solution is $y = ae^{2x} + be^{3x}$. [6]
 - b) Solve any two

[10]

$$i) \qquad \frac{dy}{dx} = \frac{y+2}{x+y+1}$$

ii)
$$(3xy + 8y^{5})dx + (2x^{2} + 24xy^{4})dy = 0$$

iii)
$$\frac{dy}{dx} = \frac{y}{2y\log y + y - x}$$

OR

Q2) a) Form the differential equation whose general solution is $y = (C_1 + C_2 t)e^{t}$ [6]

b) Solve any two

[10]

i)
$$\frac{dy}{dx} = 1 - x \tan(x - y)$$

ii)
$$(xy-2y^2)dx-(x^2-3xy)dy=0$$

iii)
$$(x + \tan y)dy = \sin 2y dx$$

Q3) Solve any three:

[18]

- a) Radium decomposes at the rate proportional to the amount present. If 5% of the original amount disappears in 50 years, how much will remain after 100 years.
- b) A constant e.m.f E volts is applied to a circuit containing a constant resistance R ohms in series and a constant inductance L henries. If the initial current is zero, show that the current builds upto half its theoretical

maximum in
$$\left(\frac{L \log 2}{R}\right)$$
 seconds

- c) A body at temperature 100° C is placed in a room whose temperature is 20° C and cools to 60° C in 5 minutes. Find its temperature after 10 minutes.
- d) Find the orthogonal trajectories of $r = a(1 \cos \theta)$

OR

Q4) Solve any three:

[18]

- The inner and outer surfaces of a spherical shell are maintained at T_o and T₁ temperatures respectively. If the inner and outer radii are r_o and r₁ respectively and thermal conductivity of the shell is k, Find the amount of heat lost from the shell per unit time. Find also the temperature distribution through the shell.
- b) A body starts moving from rest and is opposed by a force per unit mass of value cx and resistance per unit mass of value bv^2 , where x is displacement and v is velocity of the body at that instant, show that the velocity of the particle is given by $v^2 = \frac{c}{2h^2} \left(1 e^{-2bx}\right) \frac{cx}{h}$
- c) If the population of a country doubles in 50 years in how many years will it become three times under the assumption that the rate of increase is proportional to the number of inhabitants?

- d) A body originally at 80° C cools down to 60° C in 20 minutes, the temperature of air being 40° C. What will be temperature of the body after 80 minutes from the original?
- Q5) a) Find the Fourier series to represent $f(x)=x^2$ in the interval -l < x < l.

Hence deduce:

$$\frac{\pi^2}{12} = \frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + - - - -$$

b) Find the reduction formula for,

$$I_n = \int_0^\infty e^{-x} \sin^n x dx$$

Hence show : $I = \frac{24}{85}$

OR

Q6) a) Express 'y' as a Fourier series upto first harmonic where y is given as: [8]

x	0	$\frac{\pi}{3}$	$2\pi/_{3}$	π	$4\pi/_{3}$	$5\pi/3$
у	1.0	1.4	1.9	1.7	1.5	1.2

b) Evaluate:
$$\int_{0}^{\infty} \frac{x^{5}}{5} dx$$
 [4]

$$B(m,n) = B(m,n+1) + B(m+1,n)$$

SECTION - II

Q7) a) Trace the following curves (any two)

[8]

i)
$$x(x^2 + y^2) = a(x^2 - y^2)a > 0$$

- ii) $r = a \sin 2\theta$
- iii) $x = a(t + \sin t), y = a(1 \cos t)$
- b) Find the length of one loop of lemniscate

[5]

$$r^2 = a^2 \cos 2\theta$$

c)
$$if \phi(a) = \int_{a}^{a^2} \frac{\sin ax}{x} dx$$
 find $\frac{d\phi}{da}$ [4]

OR

Q8) a) Trace the following curves (any two)

[8]

i)
$$a^2y^2 = x^2(a^2 - x^2)$$

ii)
$$r = \frac{a}{2}(1 - \sin \theta)$$

iii)
$$x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$$

b) Show that
$$\frac{d}{dt} \operatorname{erf} \sqrt{t} = \frac{e^{-t}}{\sqrt{\pi t}}$$
 [4]

c) In Astroid $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$, arc length S is measured from cusp, which lies on y - axis, Show that $S^3 \alpha x^2$ [5]

- Q9) a) Find the equation of circle which is the section of sphere $x^2 + y^2 + z^2 + 6y 6z 21 = 0$ and has center on M(2,-1,2) [6]
 - b) Find the equation of right circular cone with vertex (1,2,-3) and semivertical angle $\cos \frac{1}{\sqrt{3}}$, whose axis is $\frac{x-1}{1} = \frac{y-2}{2} = \frac{z+1}{-1}$ [5]
 - Find the equation of right circular cylinder with radius 5 and axis is the line $\frac{x-2}{2} = \frac{y-3}{1} = \frac{z+1}{1}$ [6]

OR

- Q10) a) A sphere with constant radius r passes through origin and meets coordinate axes in A, B, C respectively, Show that the locus of centroid of the triangle ABC is a Sphere $\S(x^2 + y^2 + z^2) = (r^2 + r^2)$ [6]
 - b) Find the equation of right circular cone passing through (1,1,2) with vertex as origin and axis is 6x = -3y = 4z. [5]
 - c) Find the equation of right circular cylinder with axis [6]

$$\frac{x-1}{2} = \frac{y-2}{1} = \frac{z-3}{2}$$
 and radius = 2

Q11) Solve any two

a) Evaluate $\int_{0}^{a} \int_{0}^{\sqrt{a^2 - x^2}} e^{-x^2 - y^2} dxdy$ [16]

- b) Prove that the mean distance of the points within a circular area of radius a, from a fixed point on the circumference is $\frac{32a}{9\pi}$
- c) Find the volume of the region bounded by $z = x^2 + y^2$ and z = 2x

a) Evaluate
$$\iint_{V} \frac{dxdydz}{(1+x+y+z)^{\frac{3}{2}}}$$

Over the volume of tetrahedron bounded by

$$x = 0, y = 0, z = 0$$
 and $x + y + z = 1$

b) Find the centre of Gravity of the area in first quadrant, bounded by

$$\left(\frac{x}{a}\right)^{\frac{2}{3}} + \left(\frac{y}{b}\right)^{\frac{2}{3}} = 1$$

Where density $\rho = \lambda xy$, $\lambda = constant$

c) Find the area between the parabola $\frac{y+8}{x} = x-2$ and X -axis.

