Total No of Questions: [08]

SEAT NO.:	
	1

[Total No. of Pages: 01]

[10]

M.E. 2013 Civil (Structurs) Advanced Mechanics of Solid (Semester - I)

		(Semester - I)	
	e: 3 H		s : 50
Instru	ctions	to the candidates:	
1)	Answ	ers to the questions should be written in single answer book.	
2)	Answ	er any five questions.	
3)	Neat	diagrams must be drawn wherever necessary.	
4)	_	res to the right side indicate full marks.	
		f Calculator is allowed.	
6)	Assun	ne Suitable data if necessary	
Q. 1)	a)	Derive compatibility conditions in-terms of strains for 3-D elasticity problem.	[05
	b)	Explain in brief stress tensor and strain tensor.	[05
Q. 2)		Show that $\phi = \frac{q}{8c^3} \left[x^2 \left(y^3 - 3c^2 y + 2c^3 \right) - \frac{1}{5} y^3 \left(y^2 - 2c^2 \right) \right]$ is a stress function, and	[10]
		find what problem it solves when applied to the region included is $y = \pm c$, $x = 0$, on the side x positive.	
Q. 3)		Derive equations of equilibrium for 2-D elasticity problems in polar coordinates.	[10
Q. 4)		A simply supported circular plate of radius 'a' with circular hole at the center of radius 'b' subjected to shearing forces Q ₀ uniformly distributed along inner edges. Determine maximum deflection of the plate.	[10
Q. 5)		Prove that for the equilateral triangular cross section of side '2a', the torque 'T' is given by approximately $T = G\theta a^4 \frac{\sqrt{3}}{5}$.	[10
Q. 6)		Find the equation for deflection, bending moment and shear force for a semi- infinite long beam resting on elastic foundation subjected to force 'P' at left end.	[10
0.7)		Semi-circular beam simply supported on three supports equally spaced carrying	Γ10

uniformly distributed load of intensity W/m over entire span. Determine

Derive an expression for bending stress for curved beam in elevation.

maximum bending moment and twisting moment.

Q.8)