Time: 3 Hours

SEAT NO.	
SEAT NO.	

[Total No. of Pages : 2]

Max. Marks: 100

[8]

S.E. 2008 (Computer Engineering) Computer Graphics (Semester -II)

Instru	ctions t	o the candidates:			
1)	Answe	ers to the two sections should be written in separate answer books.			
2)	Answe	er any three questions from each section.			
3)	Neat d	liagrams must be drawn wherever necessary.			
4)	Figure	es to the right side indicate full marks.			
5)	Use of	f Calculator is allowed.			
6)	Assun	ne Suitable data if necessary			
	SECTION I				
Q1)	a)	Explain DDA line drawing algorithm with the help of illustration.	[8]		
(-)	b)	Explain various Character Generation Methods	[6]		
	c)	Define	[4]		
	٠,	i) Pixel ii) Frame buffer	[.,]		
		Or			
Q2)	a)	Consider the line from $(4,9)$ to $(7,7)$. Use Bresenhams line drawing algorithm to	[8]		
		rasterize this line and give output pixels.			
	b)	Explain the features of the following:	[6]		
		i) Scanner	. ,		
		ii) Digitizer			
	c)	Explain Display File structure	[4]		
Q3)	a)	What are the different types of polygon. Explain Even-Odd method to test point	[8]		
		is inside or outside the polygon.			
	b)	Explain 2D Viewing tranformation. (Window-to-viewport)	[8]		
		Or			
Q4)	a)	Explain Cohen-Sutherland outcode algorithm.	[8]		
	b)	What is windowing and clipping? Explain Interior and Exterior Clipping?	[8]		
		Or			
Q5	a)	What is Homogeneous co-ordinate system? Explain its need in Transformations?	[8]		
	b)	Find the transformation matrix that transforms the square ABCD to half the size	[8]		
		with center remaining at the same position. The co-ordinates of square are $A(1,1)$,			
		B(3,1), $C(3,3)$, $D(1,3)$ and center at $(2,2)$. Also find resultant co-ordinates of			
		square.			
		Or			
Q6)	a)	Explain Parallel Projection and its types.	[6]		
	b)	Explain rotation of an object about an arbitrary axis in 3D.	[10]		
		SECTION II			
Q7)	a)	Explain with illustration how segments are created, renamed and deleted.	[10]		

What is animation? Discuss different methods of controlling animations.

		Or	
Q8)	a)	What is segment? Explain a segment table with example. What are the data structures used to implement the segment table	[8]
	b)	Describe the steps required to produce real-time animation.	[8]
Q9)	a)	Compare Gouraud and Phongs method of shading.	[8]
	b)	Why are hidden surface algorithms needed? Explain any two algorithms used for removing hidden surfaces.	[8]
		Or	
Q10)	a) b)	Explain Binary Space Partition algorithm for hidden surfaces. Write short notes on- i) HSV Color Model ii) CMY Color Model	[8] [8]
Q11	a)	What are fractals? Explain how fractal line algorithm can be used for generating fractal surfaces.	[8]
	b)	What is interpolation? Explain Large range interpolation method.	[8]
		Or	
Q12	a)	What is fractal dimension? Explain Hilberts curve in detail.	[8]
	b)	Explain the features of computer graphics and animation software 3D-Studio or Maya. Enlist its application.	[8]