Total No of Questions: [12]

SEAT NO.	•	

[Total No. of Pages: 3]

S.E. (COMP / IT / ELECTRICAL / INSTRUMENTATION) ENGINEERING MATHEMATICS III

2008 Course

Time: 3 Hours

Max. Marks: 100

Instructions to the candidates:

- 1) In Section I attempt Q. No. 1 or Q. No. 2, Q. No. 3 or Q. No. 4, Q. No. 5 or Q. No. 6.
- 2) In Section II attempt Q. No. 7 or Q. No. 8, Q. No. 9 or Q. No. 10, Q. No. 11 or Q. No. 12.
- 3) Answers to the two sections should be written in separate answer books.
- 4) Neat diagrams must be drawn wherever necessary.
- 5) Figures to the right side indicate full marks.
- 6) Use of Calculator(non programmable) is allowed.
- 7) Assume Suitable data if necessary

SECTION I

Q1) a) Solve the following (any three)

[12]

i)
$$(D^2 + 4)y = \sin x \cos 3x$$

ii)
$$(2x+1)^2 \frac{d2y}{dx^2} - 2(2x+1) \frac{d2y}{dx^2} - 12y = 6x$$

iii)
$$(D^2 + 9)y = \tan 3x$$
 (by variation of parameters)

iv)
$$(D^2 - 3D + 2)y = e^{e^{-x}}$$

b) A circuit consists of an inductance L & condenser of capacity C in series. An alternating emf Esin(nt) is applied to it. At time t=0, the initial current and charge on the condenser being zero, find the current flowing in the circuit at any time t when $\omega \neq n$, if $\omega^2 = 1/LC$

OR

Q2) a) Solve the following (any three)

[12]

[5]

i)
$$x^2 \frac{d2y}{dx^2} - x \frac{dy}{dx} + y = x \log x$$

ii)
$$(D^2 - 4D + 4)y = \frac{e^{2x}}{x}$$

iii)
$$(D^2 + 2D + 1)y = e^{-x} \log x$$
 (by variation of parameters)

iv)
$$\frac{x^2 dx}{y^3} = \frac{y^2 dy}{x^3} = \frac{dz}{z}$$

b) Solve:
$$\frac{du}{dx} + v = \sin x$$
, $\frac{dv}{dx} + u = \cos x$ [5] given at $x = 0$, $u = 1$ and $v = 0$

Q3) a) Evaluate
$$\int_0^{1+i} (z^2 + 1) dz$$
 along the straight line. [5]

b) If
$$u = \frac{1}{2}log(x^2 + y^2)$$
, find v such that $f(z) = u + iv$ is analytic. Determine $f(z)$ in [6] terms of z.

c) Show that the transformation $\omega = (z - b)/(z + b)$ maps the right half of the z - plane into the unit circle $|\omega| < 1$.

OR

- Q4) a) Evaluate using residue theorem, $\oint_c \frac{z+3}{(z-2)(z+1)^2} dz$ [6] where c is the boundary of the square with vertices $(\pm 1.5, \pm 1.5)$
 - b) If f(z) is analytic, [5] show that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial x^2}\right) |f(z)|^2 = 4 |f'(z)|^2$
 - c) Find the bilinear transformation, which maps the point -1, 0, 1 of z plane on to the points 0, i, 3i of the ω plane
- Q5) a) Using Fourier Integral representation [5] prove that $\int_0^\infty \frac{2\lambda \sin \lambda x}{\lambda^4 + 4} d\lambda = \frac{\pi}{2} e^{-x} \sin x$
 - b) Find the Fourier sine and cosine transforms of the following function: [6] $f(x) = \begin{cases} x^2, & 0 < x < 1 \\ 0, & x \ge 1 \end{cases}$
 - c) Find the z transform of the following (any two) [6]
 - i. $f(k) = 3^k \cos(4k + 5), k \ge 0$
 - ii. $f(k) = \frac{5^k}{k}, k \ge 1$
 - iii. $f(k) = k2^k, k \ge 0$

OR

- Q6) a) Find inverse z transform (any two)
 - i. $F(z) = \frac{z}{(z-1)(z-2)}$, $|z| \ge 2$
 - ii. $F(z) = \frac{z^2}{z^2 + 1}$ by integral inversion method
 - iii. $F(z) = \frac{3z^2 + 2z}{z^2 + 3z + 2}, 1 < |z| < 2$
 - b) Solve the following: [6] $12f(k+2) 7f(k+1) + f(k) = 0, k \ge 0, f(0)=0, f(1) = 3$
 - c) Solve the Integral equation [5] $\int_0^\infty f(x) \cos \lambda x dx = \begin{cases} 1 \lambda , 0 \le \lambda \le 1 \\ 0 , \lambda \ge 1 \end{cases}$

[6]

$$\int_0^\infty \frac{\sin^2 z}{z^2} dz = \frac{\pi}{2}$$

SECTION II

Q7) a) Calculate the first four central moments of the given distribution. Is the distribution platykurtic?

[9]

Х	2.0	2.5	3.0	3.5	4.0	4.5	5.0
f	4	36	60	90	70	40	10

b) The regression equations are 8x - 10y + 66 = 0 and 40x - 18y - 21 = 0. The value [8] of variance of x is 49. Find the correlation coefficient between x and y. Also find the standard deviation of y.

OR

- Q8) a) The average number of misprints per page of a book is 2. Assuming the distribution of number of misprints to be Poisson, find the probability that a particular book is free from misprints and containing more than one misprint.
 - In a normal distribution, 31% of the items are under 45 and 8% are over 64. Find the mean and standard deviation of distribution.
 (Given Area corresponding z = 0.5 is 0.19 and z = 1.41 is 0.42)
 - c) The mean and variance of Binomial distributions are 6 and 2 respectively. Find $p(r \ge 1)$. Where r is the number of successes in n trial. [5]
- Q9) a) If the directional derivative of $\emptyset = axy + byz + czx$ at (1,1,1) has maximum [6] magnitude 8 in a direction parallel to z axis, find the values of a, b and c.
 - b) Show that $\overline{F} = (x^2 + xy^2)\overline{\iota} + (y^2 + x^2y)\overline{\jmath}$ is irrational and final scalar \emptyset such that $\overline{F} = \nabla \emptyset$
 - c) If \overline{u} and \overline{v} are irrotational vectors then, prove that $\overline{u} \times \overline{v}$ is solenoidal vector. [4]

OR

- 10) a) Find the directional derivatives of $\emptyset = \sqrt{3} e^{x+y+z}$ at (0, 0, 0) along a line equally [5] inclined with co ordinate axes.
 - b) Determine f(r) such that $f(r)\bar{r}$ is solenoidal. [3]
 - c) Show that (any two) [8]

i.
$$\nabla \left(\frac{\bar{a}.\bar{r}}{r^2} \right) = \frac{\bar{a}}{r^2} - \frac{2(\bar{a}.\bar{r})}{r^4}\bar{r}$$

ii.
$$\nabla x \left[\bar{a} x \overline{(b} x \bar{r}) \right] = \bar{a} x \bar{b}$$

iii. For a scalar function u and v, show that

$$\nabla . (u \nabla \nabla - V \nabla u) = u \nabla^2 V - V \nabla^2 u$$

- 11) a) Using Green's theorem, Evaluate $\oint_c (e^y \bar{\iota} + x(1 + e^y) \bar{\jmath}) . d\bar{r}$ for a closed [6] curve C given by $\frac{x^2}{36} + \frac{y^2}{49} = 1, z = 0$
 - b) Evaluate [6] $\iint_{S} (\nabla \times \overline{F}) \cdot \hat{n} ds \text{ where 's' is the curved surface of the paraboloid } x^{2} + y^{2} = 4z$ bounded by the plane z = 4, where $\overline{F} = 3(x y)\overline{\iota} + 2xz\overline{\jmath} + xy\overline{k}$.
 - Show that $\iiint_{\mathcal{V}} \frac{2 \, dv}{r} = \iint_{\mathcal{S}} \frac{\bar{r} \cdot \hat{n}}{r} \, ds$ [5]

OR

- 12) a) Evaluate $\int_c \overline{F} \cdot d\overline{r}$ for $\overline{F} = 3x\overline{\iota} + (x y)\overline{\jmath} + z\overline{k}$, [6] along the curve $x = 3t, y = t, z = t^2$ from t = 0 to t = 1.
 - b) Apply stokes theorem to evaluate $\int_c 4ydx + 2zdy + 6ydz$, where c is the curve of intersection of $x^2 + y^2 + z^2 = 9$ and x + z = 0
 - c) If $\nabla . \overline{A} + \frac{1}{c} \frac{\partial \emptyset}{\partial t} = 0$ and $\nabla^2 \overline{A} = \frac{1}{c^2} \frac{\partial^2 \overline{A}}{\partial t^2}$ then

 Show that $\overline{E} = -\nabla \emptyset \frac{1}{c} \frac{\partial \overline{A}}{\partial t}$, $\overline{H} = \nabla \times \overline{A}$ are solution of Maxwell's equation $\nabla \times \overline{H} = \frac{1}{c} \frac{\partial \overline{E}}{\partial t}$