

[Total No. of Pages: 2]

S.E. 2008 (INFORMATION TECHNOLOGY) DIGITAL ELECTRONICS & LOGIC DESIGN (210243)

(Semester - I)

	Time:	3 Hours Max. Marks: 100	
1) 2) 3)	Answe Neat d Figure	o the candidates: or Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or Q.8, Q.9 or 10 and Q.11 or Q.12 liagrams must be drawn wherever necessary. os to the right side indicate full marks. one Suitable data if necessary SECTION I	
Q1)	a)	Represent $(-18)_{10}$ & $(-3)_{10}$ in 2's complement representation and Perform the following operations using 2's complement method. i. $(18)_{10} - (3)_{10}$ ii. $-(18)_{10} - (-3)_{10}$ iii. $-(18)_{10} - (3)_{10}$ iv. $(18)_{10} + (3)_{10}$	[10]
	b)	Code decimal number 23.45 in straight binary, Gray, BCD & Excess 3 code. OR	[8]
Q2)	a)	Express the following numbers in Binary, BCD, Excess 3, Octal and Hexadecimal. Show step by step calculations.	[10]
		i. (32) 10 ii. (47) 10	
Q3)	b) a)	Implement following Boolean function with ONLY NAND gates & ONLY NOR gates. Y = AB + AC + A#BC Compare TTL and CMOS Logic Family by considering following Parameters.	[8]
(2)		i. Noise Immunityii. Propagation delayiii. Power Dissipationiv. Fan Out	
	b)	Draw and explain 2 inputs TTL NAND gate with Totem Pole Output.	[8]
Q4)	a)	OR State conditions to be satisfied for interfacing, by driving & load gate. Draw and explain the interfacing of CMOS driving TTL	[8]
	b)	Define the following IC characteristics & write typical value for CMOS logic family	[8]
		i. Supply voltage and Temperature rangeii. Propagation delayiii. Power dissipationiv. Figure of merit	
Q5)	a) b)	Design Full adder and Full Subtractor using suitable Demultiplexer. Minimize the following function using K-map and implement using basic logic	[8]

gates $f(A,B,C,D) = \sum m(1,2,5,8,9,10,12,13) + d(3,6,7)$

Q6)	a) b)	Design using 4:1 Multiplexer and Logic gates. $F = \sum m (1,2,4,9,11,14)$ Comment on propagation delay of parallel adder & carry look ahead adder. Write propagation delay of 4 bit parallel adder & carry look ahead adder in terms of gate delay.	[8]
		SECTION II	
Q7) ·	a)	Explain the difference between asynchronous and synchronous counter &	[10]
		Convert S - R flip- flop into J - K flip- flop. Show the design.	011
	b)	Draw and explain 4 bit Johnson counter. If initial state of 4 bit Johnson counter is "1000", with waveform explain all possible states from initial state. OR	[8]
Q8)	a)	Design a Sequence generator to generate sequence $4 \rightarrow 1 \rightarrow 5 \rightarrow 2 \rightarrow 3 \rightarrow 4$. Using Master Slave JK Flip Flop IC 7476.	[10]
	b)	What is race around condition? Explain with the help of timing diagram. How is	[8]
		it removed in basic flip-flop circuit?	
Q9)	a)	Design Excess 3 to BCD code convertor using PLA.	[8]
	b)	Draw & explain the general block diagram of PAL.	[8]
		OR	
Q10)	a)	Implement the following function using programming Logic Array?	[8]
		F1 = m(0,3,4,7) $F2 = m(1,2,5,7)$	
	b)	Differentiate between PAL & PLA and CPLD & FPGA.	[8]
Q11)	a)	List different VHDL Modeling styles & comment on difference in them with example.	[8]
	b)	What is bus? Explain the significance of data, address & control bus of microprocessor.	[8]
012)		OR	[0]
Q12)	a)	Comment on difference between 'signal' & 'variable' in VHDL.	[8]
	b)	Draw & explain the general block diagram of microprocessor.	[8]