

Total No of Questions: [12]

SEAT NO.:	
52222 1.0	

[Total No. of Pages: 04]

S.E. 2008 (MECH/MECH SW/PROD/PROD SW/AUTO)

ELECTRICAL TECHNOLOGY

Time: 3 Hours

Max. Marks: 100

Instructions to the candidates:

- 1) Answers to the two sections should be written in separate answer books.
- 2) Answer any three questions from each section.
- 3) Neat diagrams must be drawn wherever necessary.
- 4) Figures to the right side indicate full marks.
- 5) Use of Calculator is allowed.
- 6) Assume Suitable data if necessary

SECTION I

- Q. 1 (a) Draw the connection diagram of single phase energy measurement using CT [06] and PT. Mention standard specifications of single phase and three phase energy meters.
 - (b) Explain electricity tariff and its objectives. What do you understand by [06] TOD tariff?
 - (c) Two wattmeters are connected for measuring power in a three phase [06] balanced load. Identify the type of load; giving proper justification when
 - (i) the wattmeter readings are equal
 - (ii) the wattmeter readings are equal; but the later is obtained by reversing the current coil connections.

OR

Q. 2 (a) Discuss two wattmeter method for measurement of active power in a three [06] phase balanced load with the help of connection diagram and phasor diagram.

- (b) State types of illumination schemes. Explain in brief the requirements of good [06] illumination scheme.
- (c) A three phase, 400 V load has a power factor of 0.7 lag. Two wattmeters are [06] used to measure power which shows the input to be 10 KW. Find the reading of each wattmeter.
- Q. 3 (a) State types of three phase transformer connections and their applications. [08] Discuss the typical layout of distribution transformer substation with the help of single line diagram.
 - (b) Why does a three phase induction motor require starter? Explain the working [08] of rotor resistance starter with the help of neat diagram.

OR

- Q.4 (a) Derive the expression for torque developed in a three phase induction motor [08] under running conditions. Hence obtain the condition for maximum torque.
 - (b) The power input to a 3-phase induction motor is 40 KW. The stator losses are 1 [08] KW and the friction and windage losses are 2 KW. If the slip of the motor is 4%, find (i) the mechanical power output
 - (ii) the rotor copper loss per phase and
 - (iii) the efficiency of motor.
- Q. 5 (a) Define the term: Voltage regulation of an alternator. Discuss the synchronous [08] impedance method of determining voltage regulation of an alternator for various types of loads.
 - (b) State types of single phase induction motors. Explain the construction and [08] working principle of a split phase induction motor. Mention applications of such motors.

OR

- Q. 6 (a) Explain the construction and working of a shaded pole induction motor with [08] the help of neat diagrams. Mention its applications.
 - (b) A 3-phase, 50 Hz, star-connected, 2000 KVA, 2300V alternator gives a short

circuit current of 600 A for a certain field excitation. With the same excitation, [08] the open circuit voltage was 900 V. The resistance between a pair of terminals was 0.12 ohm. Find full load regulation at

(i) 0.8 power factor lagging

(ii) 0.8 power factor leading.

SECTION II

- Q. 7 (a) Explain construction, working, characteristics and any two industrial [08] applications of Universal Motor.
 - (b) A 200V D.C. shunt motor has 100 Ω field resistance and 0.2 Ω armature [08] resistance. If this motor runs at 1000rpm when drawing 10A current from supply. Determine the new speed of operation after loading if motor draws 18A current from the supply.

OR

- Q. 8 (a) A 300V D.C. shunt motor when running at 1000rpm draws 30A current from [08] supply. Determine new speed of operation, if load on motor is reduced in such a way that now it draws 15A current from supply.
 - (Given:- Resistance of armature = 0.02 Ω & Resistance of field = 150 Ω)
 - (b) State and explain following speed control methods of D.C. shunt motor with [08] neat circuit diagram:
 - (i) Armature voltage control
 - (ii) Field current control
- Q. 9 (a) For semiconductor power device SCR

[08]

- (i) State any five specifications.
- (ii) Draw only a V-I characteristics with marking of salient points.
- (iii) Any two applications.
- (b) For enhancement type MOSFET, explain

[08]

(i) Construction

		(iii) Output characteristic	
		(iv) Any two field applications	
		OR	
Q.10	(a)	Explain for GTO in connection with following	[08]
		(i) Construction	
		(ii) Working	
		(iii) Characteristics	
		(iv) Two applications	
(b)	(b)	For TRIAC & DIAC	[08]
		(i) Draw symbol	[00]
		(ii) Explain V-I characteristics	
		(iii) Two applications each.	
Q. 11	(a)	Explain various stator voltage control methods with the help of circuit	[08]
		diagrams of a three phase induction motor.	[oo]
	(b)	With the help of neat circuit diagram, explain step down chopper and step up	[10]
		chopper operations.	[20]
		Also drive formula for output voltage in terms of duty cycle '∝' (Alpha) for step	
		down chopper only.	
		OR	
Q. 12	(a)	State and explain advantages of electrical drive used in industrial applications.	[08]
	(b)	State and explain any one operating features and two applications of any four	[oo]
		following motors-	[10]
		(i) Series D.C. motor	[10]
		(ii) Shunt D.C. motor	
		(iii) Squirrel cage Induction motor	
		(iv) Universal motor	
		(v) Stepper motor	

(ii) Working

· ...